Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловой манометр для измерения давления газа до

    Теплоэлектрические приборы. Принцип действия теплоэлектрических манометров основан на изменении теплопроводности газа в зависимости от давления в области весьма низких давлений. Мерой давления является изменение температуры нити накала, на которую подается постоянная электрическая мощность. Нить помещена в специальный баллон, соединенный с вакуумной системой. Тепло от нагретой нити передается к стенкам баллона теплопроводностью, причем скорость отвода тепла от нити при давлениях меньше 1 мм рт. ст. зависит от давления внутри баллона. При постоянной подводимой электрической мощности температура нити будет тем выше, чем меньше теплопроводность среды, т. е. чем меньше давление в баллоне. Изменение температуры регистрируется термопарой или термометром сопротивления. Полученные электрические величины можно непосредственно измерить. Их также можно использовать для автоматического управления, для дистанционного измерения и для непрерывной записи значений давления самопишущим прибором. [c.525]


    Путем увеличения тока накала нити и дополнительными устройствами пределы измерения теплоэлектрическими манометрами могут быть расширены в область давлений, превышающих 1 мм рт. ст., и по некоторым данным доведены до давлений 50—60 мм рт. ст. [367]. Нижний предел измеряемого давления составляет 1 10"3 мм рт. ст., при более низких давлениях теплопроводность газа очень мала и преобладающую роль начинает оказывать передача тепла излучением от нити к стенкам баллона. [c.517]

    Наиболее распространенным в эксплуатации относительным манометром, предварительно проградуированным по компрессионному манометру, является теплоэлектрический манометр, основанный на изменении теплопроводности газа в зависимости от давления. Стандартные приборы, имеющиеся в продаже, имеют пределы измерения от 10 до 1 мм рт. ст., причем в крайних точках диапазона точность измерений весьма невелика. При помощи специальных устройств верхний предел измерений может быть доведен до 50— 60 мм рт. ст. [42]. Заводами радиотехнической промышленности выпускаются вакуумметры ВТ-2 и ВИТ-1, которые включают в себя датчик — измеритель давлений — манометрическую лампу ЛТ-2 в стеклянном баллоне или ЛТ-4М в металлическом баллоне и электрическую схему питания и измерения, соединенную проводами с измерительной частью. Измеритель давлений непосредственно присоединяется к вакуумному аппарату в месте измерения давления. Внутри измерительного баллона расположена нить накала, к которой подводится электрический ток с постоянной мощностью таким образом, количество тепла, выделяемое нитью накала в единицу времени, является постоянной величиной. К нити накала присоединена термопара для измерения ее температуры. Если давление внутри баллона понижается, то теплопроводность газа, которая зависит от давления в области весьма низких давлений, также уменьшается и температура нити накала оказывается более высокой. Это изменение температуры фиксируется термопарой и может быть измерено вакуумметром ВТ-2 или ВИТ-1, соединенным с манометрической лампой. [c.324]

    Радиационные манометры устраиваются так, что тепло от нагретой проволоки переходит к охлажденной до определенной температуры поверхности. Тепло, подводимое к проволоке, постоянно, так что температура ее поверхности меняется в зависимости от давления газа вокруг проволоки. Для измерения изменений температуры используют термопару, платиновый термометр сопротивления или линейное расширение проволоки. [c.14]


    В манометрах с нагреваемой проволокой, предложенных Пирани [131], определяется отвод тепла, который зависит от давления и молекулярного веса газа. Для этого нагревают, например, платиновую проволоку толщиной - 0,02 мм током постоянного напряжения и измеряют ее сопротивление, зависящее от температуры (100—200°). Чувствительная область измерений, которая находится в интервале 10 —10 мм рт. ст., зависит от размеров сосуда и охватывает у этих приборов только один порядок. Однако эти приборы применяют довольно часто, поскольку с их помощью давление измеряется легко и результаты измерений можно регистрировать автоматически. Равномерная чувствительность в большой области давлений (10—0,001 мм рт. ст.) достигается, если температуру проволоки измеряют термоэлементом [132—134].  [c.420]

    Для измерения изотерм адсорбции чистых газов в адсорбер из баллона через буферную емкость накачивали газ до давления 100—110 ат. После того как давление в адсорбере, регистрируемое образцовым манометром, установилось, газ из адсорбера медленно выпускался и скорость выходяш,его газа поддерживалась по реометру постоянной (300 см /мин). Точное количество газа определяли в мерном газометре, через определенные промежутки времеш одновременно замеряли количество выделенного газа и соответствующее равновесное давление. Остаток газа отдувался из адсорбера водородом при атмосферном давлении, причем состав выходящей смеси определяли газоанализатором по тепло- [c.155]

    Утверждение, что молекулярная вязкость не зависит от размеров, означает следующее Если две поверхности, движущиеся одна относительно другой, разделены газом, давление которого настолько мало, что средняя длина свободного пути больше расстояния между нимп, то обмен количеством движения не зависит от расстояния между ними. Например, вязкостный манометр Ленгмюра для измерения давлений представляет собой кварцевую нить, которую заставляют колебаться в газе. В области молекулярной вязкости быстрота демпфирования колебаний пропорциональна давлению и не зависит от расстояния между колеблющейся нитью и стенками. Зависимость молекулярной вязкости от формы поверхности означает, что, например, форма нити в манометре Ленгмюра влияет на быстроту демпфирования. Объяснение этого явления аналогично объяснению молекулярной теплопроводности. Молекула газа, ударяясь о поверхность под углом, передает ей только некоторую часть Р своей тангенциальной скорости. Если 7 = О, то молекула отражается с неизменной тангенциальной скоростью, и мы имеем случай зеркального отражения. Если 7 = 1, то молекула теряет целиком свою начальную тангенциальную скорость, может покидать поверхность в любом произвольном направлении, и мы имеем случай полного диффузного отражения. Если / >-1, то молекула покидает поверхность по направлению, близкому к тому, по которому она пришла, что легко представить при пилообразной поверхности и при почти скользящем падении молекул на эту поверхность. Для обычных поверхностей и газов величина Р почти всегда очень близка к 1. Таким образом, в обычных условиях следует считать, что имеет место полное диффузное отражение молекул. В случае вязкостного манометра, действие которого резко зависит от условий передачи количества движения, такое предположение неправомочно. Как и при передаче тепла, грубая шероховатая поверхность более эффективна, чем гладкая. [c.20]


Смотреть страницы где упоминается термин Тепловой манометр для измерения давления газа до: [c.1201]    [c.464]    [c.166]    [c.78]    [c.467]    [c.395]    [c.166]    [c.72]   
Смотреть главы в:

Современные электронные приборы и схемы в физико-химическом исследовании Издание 2 -> Тепловой манометр для измерения давления газа до




ПОИСК





Смотрите так же термины и статьи:

Давление измерение

Манометр



© 2025 chem21.info Реклама на сайте