Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотермы адсорбции статические измерения

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]


    Из способов измерения поверхности катализаторов, основанных на адсорбции газов пли паров, наибольшей точностью обладают статические (объемные и весовые) методы, предложенные Брунауэром, Эмметом и Телле-р 0м31, 62, бз в обоих случаях снимают изотермы адсорбции, с помощью которых проводят соответствующие вычисления поверхности. Изотерму снимают в условиях глубокого вакуума. Количество адсорбирующегося газа измеряют по уменьшению объема адсорбата (объемный метод) или по привесу образца (весовой метод). Температуру в течение опыта выдерживают постоянной. [c.72]

Рис. 14.15. Изотермы адсорбции цимарина из раствора вода—этанол (7 3) при 20°С на силикагеле, силанизированном диметилдихлорсиланом. Точки получены статическим методам при измерении равновесных концентраций с Помощью жидкостной хроматографии на вспомогательной аналитической колонне Рис. 14.15. <a href="/info/3644">Изотермы адсорбции</a> <a href="/info/475635">цимарина</a> из <a href="/info/66532">раствора вода—этанол</a> (7 3) при 20°С на силикагеле, силанизированном диметилдихлорсиланом. Точки получены <a href="/info/12612">статическим методам</a> при <a href="/info/1832566">измерении равновесных концентраций</a> с Помощью <a href="/info/8549">жидкостной хроматографии</a> на вспомогательной аналитической колонне
    Наряду со статическими объемными и весовыми методами определения изотерм адсорбции для определения измерения удельной поверхности катализаторов используют, особенно в лабораторной практике, динамические методы адсорбции и газовой хроматографии [346, 347]. Эти методы отличаются простотой и, главное, позволяют провести адсорбционные измерения при повышенных температурах или при низкой летучести адсорбата. [c.187]

    Изучая одним из статических методов количество поглощенного газа в зависимости от его равновесного давления при постоянной температуре, получают изотерму адсорбции. Выполняя эксперимент при постоянном давлении и при различной температуре, можно получить зависимость адсорбции от температуры и из этих данных рассчитать теплоту адсорбции. По характеру и взаимному расположению изотерм адсорбции, полученных для разных газов или паров, можно судить об избирательном действии выбранного адсорбента по отношению к тому или иному газу. Данные, получаемые из статических измерений, позволяют также рассчитывать пористость, удельную поверхность, коэффициент диффузии и другие характеристики адсорбента и адсорбата. [c.112]


    Определение изотерм, теплот и энтропий адсорбции и растворения методом Глюкауфа. Сопоставление с результатами статических измерений. Условия и и область применения газо-хроматографического метода. [c.298]

    Статические измерения изостер адсорбции при разных и или изотерм адсорбции при разных температурах [c.155]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    На рис. 8.8 белыми точками представлена изотерма адсорбции пара -гексана на ГТС при комнатной температуре, полученная обычным вакуумным статическим методом. В области малых концентраций (давлений) гексана в газовой фазе эта изотерма круто поднимается, причем первые более или менее надежно измеренные точки дают величины Г не менее 0,2 мкмоль/м , что соответствует заполнению гексаном уже более 5—7% поверхности. Определить отсюда ход изотермы адсорбции в области более низких заполнений и константу Генри невозможно из-за ненадежности экстраполяции. Черными точками представлена та же изотерма адсорбции в области низких и средних заполнений поверхности ГТС, полученная описанным методом достижения адсорбционного равновесия с использованием насыщения газа-носителя паром гексана в криостате (для создания малых его концентраций) и тепловой десорбции для определения малых значений адсорбции. Из рисунка видно, что при этом можно исследовать изотерму адсорб- [c.157]

Таблица III,3. Значения —АС/х (в кДж/моль) для адсорбции на графитированной термической саже, определенные из статических изотерм адсорбции и из газохроматографических удерживаемых объемов, измеренных при разных температурах [51, 53, 70, 88] Таблица III,3. Значения —АС/х (в кДж/моль) для адсорбции на графитированной <a href="/info/23887">термической саже</a>, определенные из статических изотерм адсорбции и из газохроматографических удерживаемых объемов, измеренных при разных температурах [51, 53, 70, 88]
    Из выражений (14.1) — (14.3) видно, что точность определения адсорбции из статических измерений определяется, в основном, точностью измерения разности концентрации до и после адсорбции. Эта разность зависит от формы изотермы адсорбции (крутизны ее подъема) и от равновесной концентрации (т. е. от положения точки на изотерме адсорбции), а также от отношения объема раст- [c.250]

    Большое преимуш ество этого метода заключается в его простоте, экспрессности и возможности анализа малых количеств вещества. При помощи этого метода достаточно просто снимаются изотермы адсорбции агрессивных веществ, а также производятся измерения при высоких температурах, осуществление которых при статических исследованиях связано со значительными техническими трудностями и вследствие длительного контакта приводит часто к разрушению используемого материала. Этот способ является весьма полезным вспомогательным средством при исследовании адсорбции на катализаторах в условиях протекания реакции. Кремер и Хубер определяли изотермы адсорбции для бензола и гексана в области температур от 300 до 550° на силикагеле и алюмосиликатном катализаторе для крекинга. Авторы указывают, что точность их измерений составляла 5 6. [c.466]

    Статические (вакуумные) и калориметрические методы измерения, позволяющие выявлять форму изотермы адсорбции и вид зависимости теплоты адсорбции от заполнения, также дают возможность судить об однородности поверхности. При неспецифической адсорбции на близкой к однородной поверхности, состоящей из кристаллической грани одного индекса, получаются изотермы адсорбции, вначале обращенные выпуклостью к оси давления в газовой фазе р, а затем [c.25]


    Даже наиболее однородные термические сажи обладают удельной поверхностью от 6 м /г и более. Поэтому для них возможны газохроматографические измерения удерживаемого объема, газохроматографические и статические измерения изотерм адсорбции, а также калориметрические измерения зависимостей дифференциальных теплот адсорбции и теплоемкостей адсорбированных веществ от заполнения поверхности. В зависимости от способа получения различают канальную, ацетиленовую, печную, ламповую, форсуночную и термическую сажи. Необработанные сажи состоят из изолированных или слипшихся сферических частиц различных размеров, поверхность которых в той или иной степени шероховата. [c.41]

    Для адсорбентов с близкой к однородной поверхностью произведены многочисленные измерения величин адсорбции и соответствующих величин давления или концентрации в газовой фазе при постоянной (изотермы адсорбции) и при разных температурах. Эти измерения производились как статическими, так и газохроматографическими методами. Значительно меньше сделано калориметрических измерений (статических и динамических) теплот адсорбции. Наконец, совсем немного сделано калориметрических измерений теплоемкости адсорбционных систем. Однако именно все эти независимые измерения, вместе взятые, для одной и той же системы адсорбат—адсорбент дают необходимую информацию о термодинамических свойствах адсорбционной системы. Вместе с тем перечисленные методы измерений имеют свои особенности, которые необходимо зачитывать как при оценке точности измеряемых величин, так и при дальнейшей их обработке для получения термодинамических характеристик адсорбции, не зависящих от способа измерений. [c.93]

    Статические измерения изотерм адсорбции. Изотермы равновесной адсорбции однокомпонентных газов и паров на твердых адсорбентах измеряют обычно вакуумными статическими методами [11. В этом случае адсорбент предварительно нагревают в вакууме для очистки его поверхности от ранее адсорбированных веществ. Температуру и продолжительность откачки, а также глубину вакуума выбирают в зависимости от геометрической структуры, величины и химического состава поверхности адсорбента. Химический состав определяет термостойкость адсорбента и прочность связывания поверхностью посторонних молекул. При изучении молекулярной (физической) адсорбции следует избегать таких обработок адсорбента, которые приводят к возникновению химически активной поверхности по отношению к данному адсорбату. [c.93]

    Из статических методов измерения изотерм адсорбции газов наибольшее распространение получили различные варианты так называемых газовых объемных методов, связанных с применением [c.94]

    Для определения константы Генри из экспериментальной изотермы адсорбции, измеренной статическим методом, надо привлечь ту или иную модель состояния адсорбированного вещества, которая позволяет выразить уравнение изотермы адсорбции в аналитической форме, в частности в виде степенного ряда (вириальные разложения по степеням Г или с), в котором первый член содержит только константу Генри. Этот метод рассмотрен в разд. 1 гл. IV. [c.108]

    На рис. 111,9 сопоставлены величины —АС/ для адсорбции этана на графитированной термической саже, полученные из измерений статическим методом изотерм адсорбции и из измеренных газохроматографическим методом удерживаемых объемов при разных температурах. В случае статических измерений, проводимых в интервале более низких температур, при малых величинах адсорбции заметно влияние остаточной неоднородности поверхности, которое вызывает в этой области Г повышение значения —АС/. Обработка с помощью [c.145]

    В этой главе мы рассмотрели экспериментальные величины термодинамических характеристик адсорбции только для малых (нулевых) заполнений. Необходимы также весьма тщательные хроматографические, статические и калориметрические измерения на обработанной водородом поверхности графитированной термической сажи изотерм адсорбции и зависимостей AS, AU ш АС от Г. Результаты этих измерений должны послужить основой для определения вторых вириальных коэффициентов адсорбированных веществ из экспериментальных данных и облегчить молекулярно-статистические расчеты термодинамических зависимостей Г (с, Т) = О, AU (Г, Т =0 и АС (Г, Т) = 0. [c.205]

    Опытные значения Ку определялись из изотерм адсорбции, измеренных статическим методом [44— [c.311]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]

    Кривые, представленные на рис. П1.5, свидетельствуют об удовлетворительном совпадении изотерм адсорбции, измеренных хроматографическим методом, с изотермами, снятыми в статических условиях. На рис. III. 6 приведены результаты четырех параллельных измерений изотермы адсорбции к-гептана на огнеупорном диатомитовом кирпиче хроматографическим методом. Видна удовлетворительная воспроизводимость хроматографического метода. [c.115]

    В табл. III.2 приведена сводка некоторых экспериментальных данных по величинам удельных поверхностей ряда катализаторов и адсорбентов, вычисленных по изотермам адсорбции к-гептана, измеренных импульсным хроматографическим методом и статическими методами в вакуумной аппаратуре. [c.115]

    Уравнение Шилова (7.1) позволяет определить время работы слоя адсорбента любой длины > о, если экспериментально установлены для заданного режима адсорбции величины к и г о- При этом величина к характеризует роль статических факторов (прежде всего роль и характер изотермы адсорбции), а величина и отражает влияние кинетических факторов на динамику сорбции. Без проведения достаточно длительных и трудоемких экспериментальных измерений рассчитать время работы адсорбционной колонны, проанализировать степень отработки сорбента в данном сечении слоя в заданный момент времени, распределение концент- [c.219]

    В данной работе следует построить изотермы адсорбции толуола и определить удельную площадь поверхности катализатора статическим методом. Для определения удельной площади поверхности катализатора используют весы Мак-Бэна. Газ приводится в соприкосновение с адсорбентом и после установления равновесия отмечают показания манометра и количество адсорбированного газа при данном давлении на весах Мак-Бэна. Проведя такие измерения при различных давлениях, вычерчивают изотерму адсорбции. По изотерме адсорбции и поверхности, занимаемой адсорбированной молекулой вещества, определяют удельную площадь поверхности адсорбента. [c.429]

    В методе БЭТ Брунауэра, Эмметта, Теллера [26—28] для расчета значения удельной поверхности на основании полученной изотермы адсорбции используется главным образом азот в качестве адсорбата при температуре измерения —196°С. Иннес [29] разработал быстрый автоматический способ для получения и измерения изотерм адсорбции. Лиипенс и Хермане [30, 31] описали соответствующую аппаратуру более подробно. Кроме того, было разработано коммерческое оборудование, основанное на использовании статического равновесного метода. Такое оборудование не нуждается в предварительной градуировке и автоматически выдает значения удельной поверхности в виде цифровых данных (например, прибор фирмы Mi romeriti s, In .). [c.638]

    Для оценки удельной поверхности твердых тел используют метод физической адсорбции газов, а в случае активных компонентов на носителе - метод хемосорбции. Наиболее точными и распространенными методами физической адсорбции являются статические (объемные и весовые), базирующиеся на получении изотерм адсорбции азота и других газов при низких температурах, близких к тевшературам кипения адсо атов. Например, при измерении адсорбции азота адсорбционный сосуд охлаждают жидким азотом. [c.645]

    Все эти особенности экспериментальных методов должны быть учтены при оценке точности и обработке результатов адсорбционных измерений. Для дальнейшей обработки очень важно, в частности, знать, при каких внешних условиях проводились измерения. В частности, статические измерения изотерм адсорбции и калориметрические измерения теплот адсорбции обычно проводят в вакуумных установках с постоянным или мало изменяющимся объемом и при постоянной температуре. Калориметрические измерения теплоемкости адсорбционных систем проводят при их медленном нагревании при постоянном объеме. Постоянство определенных термоди-намичес1 их параметров адсорбционной системы при проведении измерений очень важно, так как оно позволяет более надежно про-изводить расчет воспроизводимых и сопоставимых термодинамических характеристик адсорбции, не зависящих от условий и способа измерений. [c.102]

    Случаи необходимости калориметрических измерений тепловых эффектов адсорбции. В формулы для изменения внутренней энергии AU при адсорбции газа или пара (см. разд. 5 и 6 этой главы) входят изостерические температурные коэффициенты In с или 1п р. Из рис. 111,11 видно, однако, что изостеры близки к прямым. Это же можно сказать и о зависимости In Ki от 1/Т (см. рис. П1,4). Отсюда следует, что AU в этих сучаях слабо зависит от температуры, особенно в области малых заполнений однородной поверхности. Газохроматографические измерения удерживаемых объемов или статические измерения изотерм адсорбции (см. разд. 1 этой главы) охватывают довольно небольшой интервал температур, составляющий около 50—70 К (это видно из рис. П1,1). В этом случае зависимости In с от IIT при постоянной Г и зависимости In Ki от 1/Г часто практически линейны. Если AU значительно превосходит i Г, то из формулы (П1,64а) следует, что и зависимости In р от 1/Г при постоянной Г (изостеры адсорбции) практически линейны. Это обычно облегчает [c.140]

    Адсорбат Из статических изотерм адсорбции при разных температурах Из калориметрических измерений Из удернсиваемых объемов при разных температурах  [c.147]

    Точки получены с помощью 1 — газохроматографичеоких измерений г—7— статических измерений изотерм адсорбции [2—4 — по уравнению (IV,17), Л — по уравнению (IV,5), в— по уравнению (IV,2) и 7 — по методу [11]. [c.175]

    В связи с использованием вириальных разложений следует обратить внимание на то, что для сопоставления с молекулярной теорией адсорбции суш,ественна правильная оценка экспериментальных величин. Константы Генри и величины теплоты адсорбции при малых заполнениях поверхности графитированной термической сажи могут быть непосредственно определены из газо-хроматографических измерений при малых пробах и достаточно высоких температурах. Определение же этих констант и других вириальных коэффициентов из изотерм адсорбции, измеренных статическими методами, вызывает определенные трудности. Для обработки экспериментальных данных на однородных или почти однородных поверхностях при достаточно высоких температурах в этом случае можно нри.менить вириальное разложение [c.351]

    Карберри [5 ] дал сводку того, что известно о влиянии на величину удерживания различных адсорбционных равновесий, т. е. различных форм зависимости К от С . Он отмечает, что уравнение (I. 12), строго говоря, применимо только к значениям величины Сд, отвечающим линейным участкам изотерм адсорбции. Этим соображением ограничивается максимальная величина начальной концентрации вещества, вводимого в колонку, если предполагается, что для времени и объема удерживания должны получаться воспроизводимые результаты. Если это ограничение учитывается, могут быть получены линейные графики, показанные на рис. 1-10. Теплоты адсорбции газов и углеводородов на различных адсорбентах, найденные по этому методу Грином и Пастом [18 ], соответствовали теплотам адсорбции, полученным с помощью статических тепловых измерений. [c.37]

    При адсорбции на твердых телах разной природы проявляются молекулярные и химические взаимодействия во всем их разнообразии от ван-дер-ваальсовых взаимодействий до образования нестойких донорно-акцепторных соединений и прочных ковалентных связей. Исследование этих взаимодействий в случае адсорбции имеет свои преимущества. Во-первых, в отличие от газов и жидких растворов, силовые центры на поверхности адсорбента фиксированы. Во-вторых, в отличие от объема твердого тела, на поверхности можно реализовать невозмущенное состояние отдельных функциональных групп, например гидроксильных. Вместе с тем, поверхностные соединения и адсорбционные комплексы можно изучать с помощью химических и физических методов, дающих богатую информацию о химии поверхности, природе адсорбционного взаимодействия и состоянии адсорбированного вещества. Здесь нашли широкое применение химические, изотопнообменные, дифр актометрические и спектроскопические методы исследования состава и структуры поверхностного слоя твердого тела и поверхностных соединений, спектроскопические и радиоспектроскопические методы изучения состояния адсорбционных комплексов, а также статические и динамические (в частности, хроматографические и калориметрические) методы измерения изотермы адсорбции, теплоты адсорбции и теплоемкости адсорбционных систем. Однако исследованию адсорбции комплексом этих методов долгое время мешала неоднородность состава и структуры самих объектов исследования — традиционно применявшихся адсорбентов (активные угли, силикагели и другие ксерогели). В результате, во-первых, образовался разрыв между молекулярными моделями адсорбции, используемыми в теоретических исследованиях, и экспериментальными данными, получаемыми на адсорбентах, по степени чистоты и неоднородности структуры весьма далеких от теоретических моделей. Благодаря этому молекулярная теория адсорбции не находила экспериментальной базы, и ее развитие задерживалось. Во-вторых, выпускавшийся набор адсорбентов не смог удовлетворить и запросы новой техники. Например, для использования в хроматографии [c.5]

    Газохроматографические методы исследования поверхности катализаторов осуществляют в простой аппаратуре, не требующей применения вакуума. Характерной особенностью хроматографических методов являются высокая чувствительность, экспрессность — обычно для исследования требуются весьма небольшие количества адсорбента и адсорбата. Вследствие динамического характера различных газохроматографических вариантов измерения адсорбции время контакта адсорбата с адсорбентом может быть очень мало, благодаря чему удается изучать адсорбционные процессы реакционноспособных веществ на активных катализаторах в области повышенных температур, представляющей особый интерес для катализа. Таким методом были измерены, например, изотермы адсорбции агрессивных газов и паров. Можно отметить,что аналогичные опыты в обычной статической аппаратуре проводить затруднительно. Другой особенностью, выгодно отличающей газохроматографическую методику от обычной, является возможность проведения опыта без извлечения оттренированного или стабилизированного в ходе химического процесса катализатора из реактора. Таким путем удается детально проследить за начальными этапами разработки катализатора или за блокировкой активной поверхности и выявить устойчивость катализатора к различным компонентам реакционной смеси в ходе длительных испытаний. [c.108]


Смотреть страницы где упоминается термин Изотермы адсорбции статические измерения: [c.33]    [c.72]    [c.111]    [c.147]    [c.181]    [c.310]    [c.126]    [c.189]    [c.352]    [c.6]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции изотерма

Адсорбция изотермы Изотермы адсорбции

Изотермы

Изотермы и изотерма адсорбции

Изотермы изотермы



© 2025 chem21.info Реклама на сайте