Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика смачивания и адсорбции

    Основное внимание физическая химия уделяет изучению законов протекания химических реакций. В связи с этим, в первую очередь, необходимо изучение условий равновесия химических реакций и зависимости их направления от таких параметров, как температура, давление, концентрация. Это является предметом химической термодинамики. Скорости, с которыми совершаются химические превращения, и причины, приводящие к ускорению или замедлению реакций, изучает химическая кинетика и катализ. Большое место в физической химии занимает изучение строения атомов и молекул и состоящих из них жидкостей и твердых тел. Все возрастающее значение приобретает в последние десятилетия физическая химия процессов, развивающихся на поверхностях жидкостей и твердых тел, например смачивание, адсорбция. Эти процессы особенно важны для систем с высокоразвитой поверхностью, таких, например, как туманы, активные угли с огромной внутренней поверхностью, характеризующейся большим числом микроскопических пор и каналов. Это направление физической химии стало самостоятельной наукой — коллоидной химией. [c.12]


    Удаление масляных загрязнений и вытеснение одной жидкости другой. Рассмотренные выше представления о термодинамике смачивания и процессах адсорбции, особенно при контакте двух не-смешивающихся жидкостей (см. рис. VI, 5), дают возможность вновь рассмотреть условия вытеснения одной жидкости другой (см. 23—24), но несколько с других позиций. [c.190]

    ТЕРМОДИНАМИКА СМАЧИВАНИЯ И АДСОРБЦИИ [c.298]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Рассмотрены вопросы термодинамики адсорбции бинарных растворов неэлектролитов по методам Гиббса и полного содержания. Описано вычисление термодинамических функций адсорбционных растворов. Приведены результаты расчетов свободных энергий смачивания для случая адсорбции растворов неэлектролитов на пористом стекле и на активном угле. [c.158]

    Исследования в области термодинамики адсорбции растворов связаны главным образом с измерением величин избыточной адсорбции, их температурной зависимости и теплот смачивания адсорбента растворами. В последние годы появилось большое число работ, в которых измерены объемные эффекты при адсорбции растворов. Совместное измерение изотерм избыточной адсорбции и объемных эффектов при адсорбции растворов позволяет более полно описать процесс адсорбции. Однако обработка результатов объемных измерений при адсорбции растворов не всегда однозначна. В настоящей работе сделана попытка получить термодинамические соотношения для объемных эффектов при адсорбции растворов для различных методов термодинамики поверхностных явлений. [c.72]


    Адсорбция и краевой угол (или в общем случае смачивание) в принципе относятся к термодинамике поверхности двухкомпонентных систем. В частности, полное описание энергии и энтропии взаимодействия между твердым телом и жидкостью (паром или жидкостью) должно содержать или подразумевать как изотерму адсорбции, так и краевой угол (или, если происходит смачивание, коэффициент растекания 5ь/5=7зу—— —7зь). [c.99]

    Термодинамика адсорбции и смачивания при погружении [c.302]

    Приведенные выше способы оценки смачивающей способности ПАВ применимы для таких систем, в которых на границе твердое тело —жидкость адсорбируются только молекулы растворенного вещества. Сложнее учесть влияние ПАВ на краевые углы и оценить их смачивающую способность, если существенную роль играет и адсорбция молекул растворителя. Эта проблема анализировалась теоретически (с учетом хемосорбционных процессов) на основе статистической термодинамики для случая контакта однородной твердой поверхности с бинарным раствором [309]. Полученные при этом соотношения оказываются весьма сложными и их трудно использовать практически как для обработки экспериментальных данных, так и для расчета изотермы смачивания. [c.179]

    Очень трудно исчерпать тему этой статьи и можно сказать, что в каждом разделе мы ограничились лишь примерами, хорошо демонстрирующими развитие термодинамики поверхностных явлений. Значительные успехи достигнуты также в термодинамике адсорбции, смачивания, нуклеации, электродных процессов и в других областях. Кроме того, мы почти не касались неравновесной термодинамики, которая также является новым направлением, все более захватывающим и поверхностные явления (см. обзор [77]). Можно упомянуть и о квазитермодинамике (см., например, [7]), в которой термодинамические методы используются как некое приближение для исследования структуры поверхностных слоев. [c.34]

    Гидрофильность, как и лиофильпооть вообще, определяется прежде всего величиной свободной энергии связи данного вещества или поверхности данного тела, напр, дисперсной фазы, с водой. Т. обр. гидрофильность можно оценить соответствующими тепловыми эффектами, измерения к-рых при различных т-рах позволяют с помощью методов химич. термодинамики вычислить свободную энергию связи. В этом смысле гидра гацию следова1го бы рассматривать как проявление гидрофильности. Обычно же гидрофильность характеризуют адсорбционной связью с водой, образованием с нею неопределенных соединений. Полная характеристика гидрофильности выражается распределением количества воды по величинам анергии связи. Для воды, адсорбционно связанной с единицей поверхности данного твердого тела, практически учитывают только энергию связи первого слоя молекул воды (мопомолекулярного слоя), так как энергия связи последующих слоев значительно меньше. Гидрофильность выражается, т. обр., дифференциальными теплотами смачивания данного тела водой на единицу его поверхности или теплотами адсорбции водяного пара. Для этого могут быть измерены интегральные теплоты смачивания или адсорбции при различных количествах адсорбционно связанной воды. [c.469]

    Полученные таким образом дифференциальные теплоты адсорбции сопоставляются с теоретически рассчитываемыми значениями адсорбционной энергии, которые относятся к абсолютному пулю (см. работы Орра и стр. 110 настоящей книги). Вообще при сопоставлении теплот адсорбции и смачивания с величинами теоретически вычисляемой адсорбционной энергии необходимо учитывать соотношения между ними, даваемые термодинамикой поверх-1ЮСТНЫХ явлений [16,39—42]. [c.67]


Смотреть страницы где упоминается термин Термодинамика смачивания и адсорбции: [c.591]    [c.8]   
Смотреть главы в:

Катализ вопросы избирательности и стереоспецифичности катализаторов -> Термодинамика смачивания и адсорбции




ПОИСК





Смотрите так же термины и статьи:

Смачивание

Термодинамика адсорбции и смачивания при погружении

Термодинамика смачивания



© 2024 chem21.info Реклама на сайте