Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжения при бомбардировке тел заряженными частицами

    Из (V-24) следует, что предельный заряд частицы, получаемой от теплового движения ионов, пропорционален радиусу частицы и не зависит от напряженности поля. Расчеты, проведенные по уравнениям (V-23) и (V-24), показывают, что для частиц, диаметр которых менее 0,5 мк, зарядка под действием тепловой диффузии имеет более существенное значение, чем под действием ионной бомбардировки. Зарядка частиц протекает во времени весьма интенсивно, и за доли секунды заряд становится близким к предельному. [c.118]


    В электрофильтрах газы, находящиеся в непосредственной близости от заряженной проволоки, ионизируются (образование короны). Ионы движутся вдоль заземленных пластин, сталкиваясь с пылью и другими частицами и заряжая их. Приобретаемый частицами заряд зависит от напряженности поля, площади поверхности частицы и ее диэлектрической проницаемости. Частица, заряженная путем бомбардировки или диффузии газовых ионов, мигрирует к заземленной пластине. Скорость миграции является функцией заряда частицы, напряженности поля (движущей силы) и сопротивления газа. Для частиц размером в несколько микрометров скорость составляет 10—100 мм/с, что значительно превышает скорость миграции частиц в гравитационном поле ( 0,1 мм/с). Образующийся слой пыли удаляют механическим путем. [c.166]

    При зарядке частиц путем столкновения с ионами (бомбардировка) напряженность электрического поля, общая площадь поверхности частиц и их диэлектрические свойства играют главную роль, тогда как при зарядке частиц ионной диффузией наиболее важными факторами являются число ионов, их подвижность (которая является функцией температуры) и время, отпущенное на этот процесс. Теоретические расчеты заряда, приобретенного частицами, позволяют сделать следующие предположения  [c.449]

    Бомбардировка поверхности изолятора заряженными частицами, электронами или ионами может, конечно, вызвать появление на ней заряда. Возникает определенный поверхностный потенциал (см. раздел П, 1). Заряд, который может существовать на поверхности, ограничен диэлектрической проницаемостью воздуха и составляет около 10 электрон-см что, по уравнению Пуассона [уравнение (7)], соответствует напряженности поля в 10 б- На поверхностях электретов были измерены поля напряженностью до 30 кв-см [42]. Найдено [152], что при повышенном давлении воздуха предельный заряд несколько больше. В работе [118] сообщалось, что для использования метода электронного спинового резонанса достаточен заряд 10 электрон-см , но возможно, что это просто опечатка. [c.669]

    В этом приборе [43] положительно заряженные ионы смеси газов, образуемые при бомбардировке электронами, ускоряются в электрическом поле и собираются в пучок, который затем, отклоняясь в магнитном поле, разделяется на отдельные компоненты в зависимости от их массы. Для магнитного поля данной напряженности величина отклонения зависит от скорости, массы и заряда иона более легкие частицы двигаются быстрее и отклоняются больше. Изменяя ускоряющее напряжение, можно любой требуемый компонент направить на коллектор ионов. Ионный ток пропорционален скорости образования выбранных ионов и, следовательно, пропорционален парциальному давлению соответствующего газа. [c.102]


    В настоящее время получено большое число таких радиоактивных изотопов существует лишь немного элементов, которые нельзя активировать таким способом. В частности, были получены изотопы элементов технеция и прометия, которые в природе не встречаются. Радиоактивные изотопы образуются при бомбардировке различными частицами, такими, как нейтроны ( г, или просто га), протоны ( Н, или р), а-частицы (гНе, или а), дейтроны (1Н, или с1), у-лучи и даже более тяжелые ядра. Так как нейтроны не имеют заряда, они не отталкиваются при приближении к ядрам, даже если их энергия очень мала (медленные, или тепловые, нейтроны). Следовательно, нейтроны очень эффективны для проведения ядерных превращений, и большинство искусственных радиоактивных изотопов получены при облучении иейтроиами в ядерном реакторе (рис. 5.16). Другие бомбардирующие частицы заряжены, и, для того чтобы преодолеть возникающие силы отталкивания, необходимо сообщить им очень высокие энергии. Этого достигают проведением бомбардировки в ускорителях, таких, как циклотроны. В них заряженные частицы движутся по круговым траекториям под действием магнитного поля, перпендикулярного плоскости траектории. Частицы таким образом многократно проходят через металлическую камеру (которой придают различную форму), несущую переменный электрический заряд. Частицы, проходящие через камеру с определенной фазой и угловой скоростью, ускоряются и постепенно приобретают энергию, во много раз превышающую энергию, соответствующую приложенному напряжению. Если магнитное поле постоянное и частота колебаний электрического заряда определенная, то скорость (т. е. энергия) частиц будет пропорциональна радиусу их круговой траектории. Типичный [c.160]

    Ионная бомбардировка представляет собой,, несомненно, наиболее сильный и эффективный метод электризации твердых частиц, однако селективность этого метода практически равна нулю. Если объединить этот процесс с электризацией методом индукции, то селективность такого комбинированного метода будет очень хорошей. Электризация с помощью подвижных ионов в действительности не является электростатическим процессом, хотя обычно этот термин применяют для описания любого процесса обогащения с использованием электрического поля высокого напряжения. В последние годы термин высокое напряжение стал благодаря постоянному употреблению общепринятым названием таких процессов, включая и ионную бомбардировку. В процессе высокого напряжения подвижные ионы образуются у светящегося электрода, который является причиной коронного разряда и, служа источником подвижных ионов, одновременно сообщает им и направление. Если диэлектрическую и проводящую ча-, стицы поместить на пути подвижных ионов, то часть поверхности каждой частицы получит сильный электрический заряд. На проводнике этот заряд перераспределится почти мгновенно, тогда как на непроводнике перераспределение такого же заряда будет чрезвычайно медленным. Если на заземленную поверхность на пути заряженных ионов поместить группу заряженных частиц, то будет обнаружено, что при преграждении движения подвижных ионов частицы проводника свободно покинут заземленную поверхность, заряд их уйдет в землю. С другой стороны, диэлектрики, или частицы непроводника, которые неспособны быстро терять свой заряд, удержатся иа поверхности своей собственной силой отражения. Теория электростатического отражения дает только метод рещения уравнений Лапласа и Пуассона путем рассмотрения условий симметрии. Другими словами, процесс будет описываться этими уравнениями, если принять, что частица равного и противоположного заряда становится в положение зеркального изображения по отношению к заземленной поверхности и данной частице. Сила этого отражения Р= = QQj/4яeo(2s)2, где Q=Q —полный поверхностный заряд на минерале 5 — расстояние от заряда до заземленной поверхности ео —сила ионного поля. [c.367]

    Пробить электронную оболочку атома и, достигнув его ядра, взорвать его могут лишь частицы, лишенные, подобно а-частицам, электронной оболочки. Так как а-частицы имеют положительный заряд, они должны обладать в момент сближения с ядром-мишенью громадной кинетической энергией или, иначе, громадной скоростью, чтобы преодолеть отталкивание ядром-мишенью и приблизиться к нему настолько, чтобы его разрушить. Незначительность запасов естественных радиоактивных веществ и ничтожная попадаемость а-частиц в ядра побудили к поискам более доступных и эффективных средств для разрушения атомных ядер. Таким средством оказалась бомбардировка потоками ядер обычных легких элементов (водорода, гелия, азота и др.), вырванных из их электронных оболочек и разогнанных до громадных скоростей мощными электростатическими полями. В первых ускорительных установках, появившихся в 30-х годах, для разрушения атомных ядер были применены потоки протонов, образованные в разреженном водороде под влиянием напряжений в миллионы вольт. Первой ядерной реакцией, осуществленной с помощью ускоренных протонов, явилось расщепление лития. Ядро лития, захватывая протон, расщепляется на две одинаковые, симметрично разлетающиеся частицы — ядра гелия—соответственно уравнению  [c.183]


    Со времени превращения азота в кислород при помощи альфа-излучения в 1919 году все твердо уверовали в то, что ядерная физика является ключом ко всеобщему превращению элементов. Однако вслед за надеждой, что методом Резерфорда можно постепенно превратить или расщепить все атомы с помощью альфа-лучей с достаточно большой энергией, ученых постигло разочарование. За десять лет после первого удачного эксперимента смогли подвергнуть бомбардировке едва лишь дюжину элементов, да и то самых легких. В случае тяжелых элементов в массивное ядро атома не могли проникнуть даже альфа-частицы с максимальной энергией в 9 мегаэлетронвольт (МэВ). Они отклонялись большим одноименным зарядом ядра, не придя с ним в соприкосновение. Тем самым была утрачена всякая надежда на превращение ртути с помощью альфа-частиц в соседнее золото. Выход думали найти в использовании таких снарядов, как протоны (ядра атома водорода). Конечно, для этого необходимо искусственно ускорить эту частицу до столь же высоких энергий, какими обладали альфа-частицы. Откуда же взять такие гигантские энергии Для этой цели следовало бы получить и использовать напряжение в несколько миллионов вольт — техника, которой тогда еще не овладели. [c.125]


Смотреть страницы где упоминается термин Напряжения при бомбардировке тел заряженными частицами: [c.32]   
Смотреть главы в:

Расчет и проектирование экспериментальных установок -> Напряжения при бомбардировке тел заряженными частицами




ПОИСК





Смотрите так же термины и статьи:

Бомбардировка тел заряженными частицами

Заряд частицы ВМС

Напряжение заряда

Частицы заряженные



© 2024 chem21.info Реклама на сайте