Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия ионов частица

    Важным дополнением к этим теориям являются работы Дерягина и Духина, опубликованные в 1959 г. Эти авторы учли сопутствующий электрокинетическим явлениям эффект диффузии ионов. Он оказался особенно существенным для жидких поверхностей, например для эффекта Дорна при обратной седиментации (всплывании) пузырьков газа. При движении твердой сферической частицы в растворе электролита также возникают разность концентраций между ее полюсами по направлению движения и соответствующий диффузионный потенциал. Поправка, связанная с этим потенциалом, может оказаться того же порядка, что и сам потенциал перемещения частицы. Формулы, которые получаются при уточнении теории с учетом диффузии, а также закона сохранения анионов и катионов в отдельности, приобретают классическую форму только при равенстве коэффициентов диффузии анионов и катионов. Если учесть диффузию, то, исходя из требования симметрии кинетических коэффициентов в теории Онзагера, можно прийти к выводу, что наличие разности концентраций по обе стороны капилляра или пористой перегородки обязательно должно вызывать течение в растворе (капиллярный осмос), а частицы, находящиеся во взвешенном состоянии в растворе, в котором существует градиент концентрации, должны двигаться (диффузиофорез). Краткость изложения не позволяет нам приводить здесь конкретные выводы и формулы. [c.143]


    Раствор фосфорной кислоты, полученный после отделения фосфогипса фильтрацией, загрязнен перешедшими в раствор примесями фосфата кремнеземом, сульфатами и фосфатами железа и алюминия и т. п. Оптимальные условия экстракции определяются стремлением получить возможно более высокую концентрацию кислоты, крупные, хорошо фильтрующиеся кристаллы фосфогипса и ускорить процесс экстракции. Скорость растворения фосфата лимитируется скоростью диффузии ионов водорода к поверхности частиц фосфата или ионов кальция из пограничного слоя в объем раствора. При высоких концентрациях возрастает вязкость растворов фосфорной кислоты, что замедляет скорость диффузии и снижает скорость растворения. Крупные кристаллы гипса получаются при 70—80°С и невысокой концентрации серной кислоты. Для получения более концентрированной фосфорной кислоты и ускорения процесса применяют 75%-ную серную кислоту и более высокую температуру в начале экстракции. Скорость экстракции [c.150]

    Как только частицы или капельки попадают в электрическое поле электрофильтра, они приобретают электростатический заряд в результате воздействия двух механизмов механизма бомбардированной зарядки и механизма диффузионной зарядки. Ионы газа, а также электроны в случае отрицательной короны движутся при нормальных условиях сквозь поток газа, перенося частицы под влиянием электрического поля и заряжая частицы, с которыми они сталкиваются. Такая зарядка называется бомбардировкой (столкновение ионов). Кроме того, ионы газа (и электроны — там, где они присутствуют) осаждаются на частицах вследствие их теплового движения, такое явление называется диффузионной зарядкой (диффузия ионов). [c.448]

    Поляризуемость сферической частицы в постоянном и переменном (частотой V < 20/а , где О—коэффициент диффузии ионов ДЭС) полях можно вычислить по следующей формуле, полученной на основе теории поляризации тонкого (ха 1) двойного электрического слоя, разработанной С. С. Духиным и В. Н. Шиловым  [c.157]

    Система с двумя электродами. Две металлические пластины, погруженные в электролит, образуют гальванический элемент (рис. 30). Разность сил двойных слоев каждой из этих пластин F и 2 является силой движения электролитических ионов. И. Гитторф в 1857 г, установил, что скорость движения ионов v пропорциональна их подвижностям и напряженности поля , т. е. v=bE, так как скорость и приобретает ион только в том случае, когда разность силы Ее и суммы сил трения fv равна нулю. (Здесь 1= е/Ь — коэффициент трения, различный для различных ионов и зависящий от е х электролита, а следовательно, и от его температуры). Подвижности Ь+ и положительных и отрицательных ионов при напряженности поля различны. Поэтому скорости и+, для положительных и отрицательных материальных частиц могут быть выражены через их подвижности и напряженность поля в электролите v+=b+E, v-.=b-E. Гитторфом также показано, что концентрация ионов внутри электролита (далеко от электродов) в разных точках электролита одинакова, поэтому принято считать объемный заряд в электролитах равным нулю, а роль диффузии ионов в образовании токов не учитывать. Тогда полная плотность тока / в электролитах может быть выражена в виде суммы плотностей токов [c.56]


    Схематично механизм ионного обмена заключается в том, что сначала происходит диффузия иона N к частице Р ,М, затем диффузия вглубь ионита к его активным центрам, обмен с ионом М , диффузия вытесненного иона к поверхности частицы ионообменника и, наконец, его диффузия в раствор. При перемешивании раствора или в динамических условиях работы хроматографической колонки перемещение ионов к поверхности и от поверхности частицы ионита происходит быстро и эти стадии существенно не влияют на скорость установления равновесия (95). Однако диффузия ионов в самой частице ионообменного сорбента происходит медленно и практически не зависит от перемешивания раствора. Поэтому равновесие (95) устанавливается -не мгновенно, а в течение нескольких минут или даже часов, в зависимости от размеров обменивающихся ионов и плотности частицы ионообменника. На используемых в анализе ионообменниках равновесие ионного обмена обычно устанавливается в течение 5—10 мин при обмене мономерных простых и комплексных ионов неорганических или низкомолекулярных органических соединений. [c.147]

    При этом Fe(0H)2, выделяющийся на поверхности частиц активного вещества, образует отдельную фазу в виде дисперсного осадка, не препятствующего распространению реакции окисления железа в глубину частиц. Наблюдаемая поляризация при разряде железного электрода вызвана замедлением диффузии ионов 0Н , скорость которой снижается по мере увеличения толщины слоя продуктов реакции, выделяющихся на поверхности железа. Поляризация возрастает при понижении температуры и повышении разрядной плотности тока. В известных условиях разряд затрудняется образованием на железе поверхностных окислов адсорбционного характера, вызывающих пассивирование электрода. [c.87]

    Рост кристалла в пересыщенном расплаве или растворе происходит за счет отложения атомов или ионов на образовавшемся зародыше. Данный процесс сопровождается, во-первых, перемещением ИЛИ диффузией этих частиц в расплаве к зародышу и, во-вто-рых, встраиванием их в решетку кристалла. [c.222]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    В первом способе количество перескоков данной частицы I в направлении уменьшения ее концентрации оказывается больше, чем количество перескоков этой частицы в обратном направлении. В результате этого возникает поток диффузии. Поскольку неравновесный процесс в электрохимической системе (см. рис. 1), например электролиз в растворе, сопровождается изменением концентрации реагирующих веществ вблизи поверхности электродов по сравнению с концентрацией этих веществ в объеме раствора, то закономерности диффузии ионов имеют непосредственное отношение к электрохимии. [c.53]

    Студни полимеров органической природы — это обычное состояние ВМВ в биологических объектах, поэтому они представляют большой интерес для биологии, медицины и фармации. Полимерные студни, насыщенные водой, не препятствуют диффузии ионов и молекул. Однако для диффузии коллоидных частиц сетка студни создает препятствия. Для определения коэффициента диффузии в студнях измеряют расстояние от места начала диффузии до точек, где концентрация составляет ч, I или другую долю исходной концентрации. [c.476]

    Объяснение. Все явления, связанные с тепловым движением частиц (диффузия, осмос и др.), наблюдаются и в золях. Различия в кинетических свойствах золей и молекулярнодисперсных систем являются лишь количественными и связаны с различием в скоростях движения частиц в этих системах. Частицы дисперсной фазы золей в силу того, что они имеют значительно большие размеры, чем обычные ионы и молекулы, движутся значительно медленнее низкомолекулярных соединений. Поэтому скорость диффузии коллоидных частиц всегда намного меньше скорости диффузии в молекулярнодисперсных системах. [c.170]


    Процесс разрушения цементных зерен водой протекает с затухающей скоростью, что вызывается образованием на их поверхности защитных пленок из продуктов реакции и уменьшением размера гидратирующихся частиц во времени. Одной из причин быстрого образования защитных пленок на гидратирующихся зернах является отслоение от кристалла групп ионов ( блоков ), которые не могут легко перемещаться в жидкой фазе и концентрируются вблизи поверхности материала кристалла. Последующая их гидратация приводит к уплотнению пленки. Способствует образованию пленок и различная скорость диффузии ионов в растворе, вызывающая избирательное удаление из зоны реакции одних молекул (например, молекул гидроксида кальция) и концентрацию на поверхности кристалла других (например, молекул ортокремниевой кислоты). [c.311]

    Электрический потенциал, возникающий на поверхности частиц смолы, оказывает тормозящее действие на свободное перемещение (диффузию) ионов в обоих направлениях. [c.260]

    Если скорость диффузии ионов в глубь зерна ионита и обратно одинакова, то процесс ионного обмена, происходящий в объеме частицы, может быть описан законом Фика  [c.99]

    Диффузия реагентов, таким образом, играет важную роль в гетерогенных процессах. Диффузия — движение частиц среды. (молекул, атомов, ионов, коллоидных частиц и т. п.), приводящее к переносу вещества и выравниванию концентраций (вернее, активностей) частиц данного сорта в рассматриваемой системе. Тем самым движущей силой диффузии служит разность активностей компонентов системы в разных ее частях. В результате гетерогенной реакции, протекающей в некотором месте реакционной среды, активности исходных компонентов-реагентов здесь уменьшаются, чем и вызывается направленный поток вещества в зону реакции. Одновременно происходит противоположный процесс удаления продуктов реакции из зоны взаимодействия. Оба эти потока осуществляются диффузионным путем. [c.227]

    Процесс очистки золей называется диализом. Осуществляется он в приборах — диализаторах, содержащих полупроницаемые перепонки, через которые свободно проходят ионы и молекулы низкомолекулярных веществ, но задерживаются более крупные по размеру коллоидные частицы. В качестве полупроницаемых перепонок применяют пленки из коллодия, целлофана, желатины, ацетилцеллюлозы и других веществ. Диффузия ионов электролитов через полупроницаемую пленку в чистый растворитель (обычно в воду) протекает очень медленно. Процесс ускоряется применением электрического поля и проточной воды. Такие более усовершенствованные приборы называются электродиализаторами. [c.337]

    При этом скорость суммарного процесса во всех случаях контролируется наиболее медленной стадией. Практически для определения коэффициентов диффузии ионов создаются условия, при которых наиболее медленной стадией будет транспортировка вещества к электроду (или от электрода). При этом помимо коэффициента диффузии, представляется возможность находить концентрацию реагирующих частиц и число электронов, участвующих в реакции. Таким образом можно установить массоперенос вещества к электроду (или от электрода). [c.203]

    Одновременно с процессами ионизации в столбе дуги происходят процессы деионизации рекомбинация заряженных частиц (объединение электрона и положительного иона в нейтральную частицу) и диффузия заряженных частиц за пределы дуги в окружающее пространство [c.181]

    Размер частиц цинка подобран так, чтобы отрицательный электрод был механически прочен и имел высокую пористость. Так как при низкой температуре происходит увеличение вязкости электро лита и снижение его электропроводности вследствие затруднения диффузии ионов, диаметр пор электрода и их количество оказывают непосредственно влияние на работоспособность цинкового электрода при низких температурах. [c.259]

    Диффузия заряженных частиц за границы нагретого объема газа вызывается их тепловым движением или появлением местных неравномерностей объемных плотностей зарядов. Так как скорость электронов во много раз больше скоростей ионов, то электроны более подвижны. Однако при своем вылете из плазмы электроны увлекают за собой и положительные ионы поэтому одновременно плазму покидают заряды обоих знаков, благодаря чему она по-прежнему остается в целом нейтральной. Ввиду этого диффузия определяется в конечном счете скоростью и длиной пробега положительных ионов. [c.24]

    При выводе уравнений предыдущего параграфа предполагалось, что скорость обоих электродных процессов ограничивается процессами переноса через межфазную границу электрически заряженных частиц, т. е. ионов металла. Но очень часто роль контролирующей стадии принадлежит не этому процессу, а замедленной диффузии реагирующих частиц к поверхности электрода или в противоположном направлении. [c.56]

    Изменение скорости хим. процессов м. б. обусловлено также влиянием Д. на физ. св-ва среды. Так, вследствие возрастания вязкости с повышением Д. р-ции могут перейти из кинетич. области протекания в диффузионную, когда скорость р-ции контролируется диффузией реагирующих частиц (см Макрокинетика). Изменяя е среды, Д. влияет на скорость ионных р-ций. При этом объемные эффекты, вызванные сольватацией ионов или заряженных групп молекул, учитываются с помощью ур-ния Друде-Нернста-Борна  [c.621]

    Структура ближайшего окружения частицы растворенного в-ва характеризуется координационными числами С., определяемыми как кол-во молекул р-рителя, связанных достаточно долго с этой частицей, чтобы участвовать вместе с ней в диффузионном движении. Число С. зависит от природы растворенной частицы и р-рителя, а также в нек-рой степени от используемого метода определения обычно используют данные по сжимаемости р-ра, скорости диффузии ионов, электропроводности, а также [c.378]

    Эти весьма интересные соображения не учитывают, однако, того, что переход совершают в одном и том же направлении (из металла в раствор) частицы разного заряда, подобно тому как это происходит при диффузии ионов в растворах электролитов. Поэтому здесь при вэзникновении скачка потенциала может быть достигнуто не равновесное, а стационарное состояние, при котором процесс одностороннего перехода не прекращается, а лишь достигается выравнивание скоростей движения противоположно заряженных частиц, но они ио-прежнему будут переходить из металла в раствор. [c.228]

    В электрофильтрах частицы подзаряжаются при помощи коронного разряда, создаваемого, например, между проволокой и окружающим ее цилиндрическим электродом. Выщедщие за пределы короны электроны соединяются с молекулами, образуя отрицательные ионы, которые в свою очередь осаждаются на аэрозольных частицах за счет их дрейфа в электрическом поле или диффузии. Поглотивщая ионы частица приобретает движение в том же направлении и осаждается на цилиндрическом электроде, если время дрейфа частицы оказывается меньше времени ее пребывания в потоке, которое примерно равно отношению длины фильтра к скорости потока. Полного улавливания, однако, не достичь даже при умеренных скоростях, так как турбулентные пульсации замедляют перемещение некоторой доли частиц к электроду, а уже осевшие частицы иногда уносятся потоком. [c.354]

    Таким образом, диффузионное неренапряжение определяется в первую очередь предельной плотностью тока щ1) пли величиной константы /Сд, Предельная плотность тока по теории Нернста — Бруннера, как это следует из ург.внения (15.28), зависит прежде всего от коэффициента диффузии соответствующих частиц , их заряда 2 , начальной концентрации Сг° (или, что то же самое, концентрации за пределами диффузионного слоя) и толщины диффузионного слоя б. Числа переноса данного внда ионов ii, как ул< е отмечалось, могут быть сделаны равными нулю кроме того, миграция вообще отсутствует в случае незаряженных частиц. Коэффициент диффузии можно либо рассчитать, либо заимствовать из экспериментальных данных определение начальной концентрации С также не представляет затруднений. Наименее определенной величиной является толщина диффузионного слоя, которая не может быть рассчитана в рамках теории Нернста—Бруннера. Ее определяют экспериментально, чаще всего из измерения предельной илотности тока. Опытные данные показывают, что б весьма мало зависит от состава раствора, но замс но меняется при изменении режима движения электролита. Эту зависимость можно передать эмпирической формулой [c.310]

    Особенно интересно явление движения капли прямой эмульсии после выключения электрического поля или при перемене его полярности, которое до сих пор не было описано в литературе. Общеизвестно, что движение заряженных частиц дисперсной фазы в дисперсионной среде возникает только при деформации двойного ионного слоя. Время восстановления равновесия после устранения источника возмущающих полей (электрического или гравитационного поля, поля сил давления) обычно измеряется долями секунд, поэтому стадии восстановления ионной сферы и ее влияние на движение частиц сравнительно мало. Если время релакса1№и г составляет минуты, а для некоторых систем часы, например для дисперсий в слабополярных и вязких средах, то избыток противоионов с одной стороны частицы и недостаток - с другой будут сохранять действие диффузионных сил на частицу в течение некоторого времени. Поэтому в дисперсных системах с больщими частицами и высокой вязкостью дисперсионной среды движение частиц может продолжаться знатательное время. Например, в касторовом масле с коэффициентом диффузии ионов О = 10 см /с капли ПМС-5 диаметром 2а = 1 мм после снятия поля напряженностью 2 кВ/см двигались в течение 3—5 мин. Время релаксации подобной капли составляет несколько десятков часов и знащпельно превыщает время ее движения. [c.23]

    Скорость растворения фосфатов в растворах фосфорной кислоты, не насыщенных продуктами реакции, лимитируется скоростью диффузии ионов кальция Са от частиц фосфата в жидкую фазу. Поэтому, высокая степень разложения фосфата на первой стадии может быть достигнута лишь при определенной концентрации фосфорной кислоты, равной 30—40% Р2О5. На второй стадии, которая является определяющей для процесса разложения фосфата в целом, наибольшая скорость разложения достигается в растворах, содержащих около 45% Р2О5. С учетом этих требований выбирается технологический режим производства суперфосфата. [c.293]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    Рассмотрим диффузию электролита Mv+Av (рис. 13), который полностью диссоциирует на ионы М - - и А - из области раствора с концентрацией l Б область с концентрацией ( i> 2). Если коэффициенты диффузии катионов и анионов равны между собой, то процесс ничем не отличается от обычной диффузии незаряженных частиц. Однако если D+ФО-, то в растворах электролитов возникают специфические явления. Предположим, что D >-D+ (например, в водном растворе Na l). При этом условии анионы в начальный момент процесса диффузии будут перемещаться слева направо (рис. 13) быстрее, чем катионы. В результате этого произойдет пространственное разделение зарядов и возникнет электрическое поле, которое будет ускорять движение катионов и замедлять движение анионов. Следовательно, через некоторый промежуток времени скорости перемещения катионов и анионов выравняются (у+=и ) и в этих условиях можно говорить об общем потоке электролита. Однако этот поток не является обычным потоком диффузии, поскольку между двумя областями раствора с концентрациями l и Сг устанавливается стационарная разность потенциалов — так называемый диффузионный потенциал Афд фф. [c.56]

    При чисто гелевой кинетике скорость установления ионообменного равновесия прямо пропорциональна концентрации ионогенных групп, содержащих вытесняемые ионы, коэффициенту взаимодиффузии D в зерне ионита и обратно пропорциональна радиусу зерна г. В этом случае кинетика ионообмена зависит от структуры, набухаемости и зернения ионита, от радиусов гидратированных ионов и не зависит от концентрации раствора. Если скорость диффузии ионов в глубь зерна ионита и обратно одинакова, то процесс ионного обмена, происходящий в объеме частицы, подчиняется закону Фика  [c.178]

    В ЭТИХ уравнениях С,- —молярная концентрация г-го компонента в объеме фильтрата У С max концентрация / ГО компонента в объеме фильтрата Утах. соответствующего максимуму на кривой элюирования Qi —общее количество молей (г-ионов) частиц г-го вида Vp —общий объем, занимаемый в колонке ионитом, см К<и —коэффициент распределения г-го компонента между ионитом и элюирующим раствором р — объем раствора на единицу объема ионита в колонке N —число эффективных теоретических тарелок z — высота слоя сорбента в колонке, см А — высота эффективной теоретической тарелки, см г — радиус частицы ионита, см D и D — коэффициенты диффузии ионов 1-го вида в растворе и в фазе ионита, см /сек  [c.182]

    Для получения пленок из латекса на поверхность подложки предварительно наносят слой соли. Растворение соли и диффузии ионов соли в латекс вызывает диффузиофоретический транспорт (см. раздел ХП. 7) латексных частиц к подложке, где они концентрируются, коагулируют и формируют латексную пленку. [c.256]

    Понятие потенциала Доннана соответствует гомогенной трактовке, в которой потенциалу приписывают одно постоянное значение в любой точке подсистемы I (фазы полиэлектролита ), В гетерогенной трактовке потенциал является функцией координат в каждой точке дисперсионной среды в области ДЭС (в окрестности частицы или вблизи фиксированных зарядов), и можно говорить лишь о некоторой среднестатистической величине г ) представление о фазовом потенциале (Доннана) становится в этой трактовке нецелесообразным, и э. д. с. цепи Mi — СМг рассматривается на основе различия диффузионных потоков электролита из солевых мостиков в подсистемы I и II. Диффузия ионов в жидкость, находящуюся в поле ДЭС, в I приводит к возникновению в растворе отрицательного потенциала , отвечающего некой усредненной величине поля ДЭС (эффект Лузье см. [15, с. 258]). [c.345]


Смотреть страницы где упоминается термин Диффузия ионов частица: [c.62]    [c.113]    [c.273]    [c.272]    [c.219]    [c.317]    [c.317]    [c.139]    [c.329]    [c.317]    [c.47]    [c.219]   
Новые проблемы современной электрохимии (1962) -- [ c.156 ]

Новые проблемы современной электрохимии (1962) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекул, ионов и взвешенных частиц

Частицы диффузия



© 2024 chem21.info Реклама на сайте