Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязко-локальный механизм разрушения

    Таким образом, в зависимости от металла, условий и характера нагружения разрушение происходит по механизму вязкого или хрупкого разрушений. Вязкое разрушение реализуется в результате макроскопической или локальной потери устойчивости пластических деформаций. Деформации, предшествующие вязкому разрушению, достаточно велики и составляют более 10-15%. При нормальных условиях эксплуатации трубопроводов и сосудов вязкое разрушение возможно лишь при наличии макроскопических дефектов. Излом при вязком разрушении волокнистый, иногда имеет шиферность, древовидность, [c.74]


    Степенная зависимость т от о, в отличие от экспоненциальной для твердых полимеров, свидетельствует о специфике механизма разрушения полимеров в высокоэластическом состоянии. Прямое сравнение энергий активации процесса разрушения сшитых и несшитых эластомеров (энергия активации одна и та же) с энергией активации вязкого течения несшитых эластомеров показало [7.112, 7.113], что энергии активации этих процессов совпадают. Поэтому этот механизм разрушения назван вязко-локальным (см. табл. 7.1). [c.225]

    Общность механизмов разрушения и вязкоупругости полимеров. Вязкоупругие свойства полимеров сушественно влияют на их прочность, особенно выше температуры хрупкости, где в процессе деформирования наблюдается молекулярная подвижность. В местах локальных перенапряжений происходит вынужденноэластическая деформация и вязкое течение. [c.81]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    По мере перехода к более высоким температурам сначала этот релаксационный процесс приводит к развитию высокоэластических деформаций в местах концентрации напряжений, главным образом, у вершин микротрещин (термофлуктуацион-но-релаксационный механизм), а затем — к образованию трещин серебра , стенки которых связаны между собой микротя-жами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии релаксационные процессы становятся господствующими, и механизмы разрушения резко изменяются (проявляется вязко-упругий механизм разрушения, ом. табл. 7.1). В местах концентрации напряжений развивается локальное вязкое течение. [c.194]


    Разрушенне полимеров в высокоэластическом состоянии. Полимер находится в высокоэластическом состоянии при 7>7 с н в этих условиях высокоэластическая деформация на чикает развиваться практически сразу с нача.па деформирования, поэтому разрушению предшествуют значительные высокоэластические деформации, имеющие релаксационный характер Механизм, разрушения полимеров в высокоэластичсском состоянии называют вязколокальиым . Ои реализуется при 7 >7 >7 с, где Гп<7 т (Тг-—температура, при которой появляются локальные области вязкого течения). [c.331]

    Таким образом, в зависимости от качества металла, условий и характера нагружения разрушение происходит по механизму вязкого или хрупкого разрушения. Вязкое разрушение реализуется в результате макроскопической или локальной потери устойчивости пластических деформаций. Деформадии, предшествующие вязкому разрушению, достаточно велики и составляют более 10-15 %. При нормальных условиях эксплуатации трубопроводов и сосудов вязкое разрушение возможно лишь при наличии макроскопических дефектов. Излом при вязком нарушении волокнистый, иногда имеет шиферность, древовидность, слоистость. Хрупкое разрушение трубопроводов и сосудов возможно при существенном охрупчивании метаплов и наличии микро- и макроскопических дефектов. Хрупкое разрушение характеризуется кристалличностью, наличием радиальных рубцов в изломе, малым значением утяжки (менее 20 %) и оста- [c.21]

    Как отмечалось ранее, разрушения делят на хрупкие и вязкие. Промежуточным между ними является квазихруп-кое разрушение, как наиболее часто встречаюшееся в реальных условиях эксплуатации конструкций. Заметим, что хрупкие разрушения реализуются не только в (природно) хрупких материалах. При определенных условиях пластичные стали могут разрушаться по механизму хрупкого разрушения в результате действия ряда охрупчивающих факторов, которые можно разделить на три основные группы механические (большая жесткость конструкции и напряженного состояния, локальное стеснение деформаций в дефектах и концентраторах напряжений, механическая неоднородность, скорость нагружения и цикличность) внешняя среда (коррозия, радиация, низкая температура) структурные изменения (деформационное старение, распад метастабильных фаз и др.). [c.77]

    Предварительно рассмотрим качественные характеристики процессов хрупкого и вязкого разрушения. В первом случае остаточные деформации малы (///о 1), а во втором велики (1/1о >1). Большинство реактопластов независимо от температуры разрушается по хрупкому механизму. То же самое наблюдается у некоторых жестких а1морфных термопластов (полистирол, полиакрилаты, поливинилхлорид и т. п.) ниже температуры стеклования, хотя локальные пластические деформации в устьях возникающих трещин наблюдаются и в этих условиях оплоть до температуры хрупкости [12]. [c.111]

    Независимо от деталей молекулярного механизма процесса разрушения, которые могут зависеть от среднего кри-гического растяжения цепей сетки [49] или от критического значения запасенной энергии, тот факт, что у.меньшеине локальных напряжений связано с перестройкой конформаций цеией, означает, что сопротивление разрыву и разрывное удлинение должны быть функциями скорости де(формации и что влияние на ннх температуры и других переменных должно быть связано с влиянием на временные зависимости вязко-упругих свойств. Например, если изменение температуры вызывает изменение всех времен релаксации в ат раз, то тогда, согласно уравнению (19.13), данная запасенная энергия достигается за эквивалентное вре.мя (/от при скорости деформацни гат- Однако соответствующее значенне критическо деформации е не изменяется. Отсюда следует, что данные по разрывному удлинению могут быть приведены к стандартной техшературе, если построить зависимости разрывного удлинения от 0г- [c.495]

    Однако для высококопцентрированных пластично-вязких дисперсий достижение предельного разрушения в условиях непрерывного сдвигового деформирования, как показано в работах [90, 150], невозможно из-за появления разрыва оплошности, обнаруживаемого при весьма малой скорости деформации. Появление такого разрыва сплошности три малой скорости деформации означает, что разрушение структуры носит не объемный изотропный, а местный локальный характер (т. е. локализуется в зоне возникновения разрыва сплошности). В ограниченных поверхностями разрыва объемах дисперсной системы сдвиговое деформирование не распространяется и степень разрушения структуры не может превысить тот уровень разрущения, который достигается к моменту появления разрыва. Иными словами, разрушение структуры соответствует той скорости деформации, при которой возникает разрыв сплошности (рис. 14). Подробнее механизм, причины и следствия возникновения разрыва сплошности будут рассмотрены ниже. Главное же его следствие состоит в невозможности реализации оптимального динамического состояния, соответствующего пре- [c.82]



Смотреть страницы где упоминается термин Вязко-локальный механизм разрушения: [c.9]    [c.5]    [c.184]   
Прочность и механика разрушения полимеров (1984) -- [ c.193 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Локальность



© 2025 chem21.info Реклама на сайте