Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксационные процессы влияние на прочность в хрупком

    Влияние релаксационных процессов на прочность в хрупком и квазихрупком состояниях [c.203]

    На схеме прочностных состояний (см. рис. 7.1) указаны предполагаемые области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния, лежащая между температурами пластичности Гп и текучести Гт. Механизмы разрушения и теория долговечности для областей I, II и III были подробно обсуждены в предыдущих главах. В этой главе будет более детально рассмотрено влияние релаксационных переходов иа прочность в хрупком и квазихрупком состояниях. Основное же содержание главы — разрушение полимеров при высоких температурах, когда долговечность в основном определяется релаксационными процессами. [c.195]


    При —97 °С кривая фактора затухания имеет широкий, не очень резко выраженный максимум, что должно быть объяснено наложением двух релаксационных процессов. Наличие этого максимума показывает, что небольшие участки макромолекулы частично сохраняют подвижность даже при очень низких температурах. Этим и можно объяснить необычную прочность полимера при низких температурах. Другими словами, концентрированные локализованные напряжения, развивающиеся под влиянием внешних механических нагрузок, могут быть компенсированы в результате изменения упорядоченности молекул вплоть до низких температур и, таким образом, хрупкий излом может быть предотвращен. [c.162]

    Теоретически прочность определяется наиболее слабыми связями внутри тела. Однако практически на нее оказывают влияние наличие неоднородностей, характер физической (надмолекулярной) структуры (исключая молекулярную ориентацию), наличие молекулярной ориентации, релаксационные свойства, воздействия внешней среды (химические и энергетические). Хрупкое разрушение материалов, т. е. разрушение при очень малых упругих деформациях и, следовательно, в отсутствие остаточных деформаций, имеет место, когда скорость воздействия силы превышает скорость релаксации элементов материала, по которым идет разрушение, т. е. релаксационные свойства полимера в этих условиях мало проявляются. Хрупкое разрушение эластомеров обычно происходит либо при низких температурах, либо при очень быстрых силовых воздействиях, либо при действии концентраторов напряжения. В этих условиях снижается роль активных жидких и газообразных сред как вследствие уменьшения релаксационной способности полимера, затруднения диффузии из-за резкого снижения молекулярной подвижности при низких температурах, так и из-за кратковременности процесса разрушения при быстрых воздействиях. [c.13]

    Недавно получены экспериментальные доказательства того, что процесс разрушения в хрупком состоянии имеет кинетический характер [5.23]. Для таких абсолютно хрупких тел, как монокристаллический кремний, корунд и карбид кремния, анализ влияния релаксационных явлений на зависимость разрывного напряжения от скорости нагружения га показал, что аномальный характер этой зависимости (при малых скоростях нагружения Ор возрастает, затем проходит через максимум и при больших скоростях уменьшается с увеличением скорости на-гружения) обусловлен взаимодействием двух кинетических процессов разрушения и локальной неупругой деформации (рис. 5.16,а). При малых о) стр возрастает с увеличением скорости нагружения (как возрастает прочность с уменьшением времени нагружения), при больших w—снижается, так как локальная неупругая деформация проявляется все меньше, а коэффициент концентрации напряжения возрастает. Большие скорости нагружения эквивалентны низким температурам. Поэтому температурная зависимость СТхр (рис. 5.16,6) имеет ана- [c.128]


    Релаксационные процессы в полимерах влияют на процессы разрушения во всех прочностных состояниях, включая и атермический процесс разрушения. В различных температурных областях полимера (см. рис. 7.1) наблюдаются три основных механизма разрушения атермический, термофлуктуационный и релаксационный (см. табл. 7.1). В кристаллических полимерах ниже температуры плавления наблюдаются первые два механизма. При атермическом механизме (область самых низких температур) тепловое движение не может оказать существенного влияния на прочность полимера, так как время ожидания флуктуации Тф превышает время атермического разрушения Тк- Однако слабое тепловое движение в этой области температур приводит к мелкомасштабным релаксационным переходам. Такие переходы характеризуются слабыми максимумами механических и диэлектрических потерь (у- и р-переходы) и вызывают увеличение энергии разрушения и прочности в областях переходов. В наиболее чистом виде термофлуктуационный механизм проявляется в области хрупкого разрушения, хотя н здесь возможны слабые (Y и -переходы, приводящие к неупругим эффектам в концевых зонах микротрещин в отсутствие высокоэластической деформации. Последняя наблюдается в концевых зонах микротрещин при переходе через температуру Тхр и выше, в области квазихрупкого разрушения. В итоте перенапряжения в концевой зоне сильно снижаются, но термофлуктуационный механизм разрушения остается тем же, что и при хрупком разрыве. [c.240]

    Прочность при растяжении является основной характеристикой сопротивляемости полимера разрушению. Определение этой характеристики необходимо для понимания таких видов раз(рушения, как раздир, утомление и износ. Разрушение в высокоэластическом состоянии— процесс значительно более сложный, чем хрупкое разрушение. На прочность в высокоэластическом состоянии существенное влияние оказывают не только неоднородности, тип физической структуры и молекулярная ориентация, но и релаксационные свойства полимера, а также агрессивность внешней среды разрушение может происходить как при малых, так и при более высоких деформациях. И если при малых деформациях есть определенная общность в закономерностях хрупкого и высокоэластического разрушения, то при предельно возможных деформациях высокоэластическое разрушение сильно отличается от хрупкого как вследствие развития ориентированной структуры, так и из-за резкого увеличения рассеянной при деформации энергии. В связи с этим представляется целесообразным более подробно проследить за элементами сходства и различия при разрушении в высокоэластическом состоянии в области малых и бол ьших деформаций. [c.40]

    Характерные релаксационные свойства металлов, их ползучесть, своеобразное влияние температуры на механизмы пластичности и упрочнения лежат в основе как процессов механической и термической обработки металлов, так и их эксплуатации в изделиях и деталях машин, особенно в условиях новой техники, предъявляющей исключительно высокие требования к материалам, например, при высоких температурах. Этим объясняется особое внимание в наших работах к адсорбционным эффектам на металлах — адсорбционному пластифицированию, т. е. облегчению пластических деформаций, адсорбционному понижению прочности — возникновению хрупкого разрушения при весьма малых интенсивностях напряженного состояния, вплоть до самопроизвольного диспергирования вместе с тем в последнее время нами были обнаружены новые важные особенности адсорбционных эффектов на металлах под влиянием малых примесей или в присутствии тончайших покрытий легкоплавкого поверхностно-активного металла в условиях легкоподвижности его атомов в процессе двумерной миграции. Эти новые проблемы, связанные с возможностью [c.15]


Прочность и механика разрушения полимеров (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Хрупкая прочность



© 2025 chem21.info Реклама на сайте