Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость нагружения

    Величина предела прочности смазок зависит от температуры и скорости нагружения. Другие факторы, например геометрические размеры испытуемого образца смазки, слабо сказываются на результатах испытания. Повышение температуры вызывает небольшое уменьшение предела прочности смазок. В сравнительно широком диапазоне температур (несколько десятков градусов) пределы прочности линейно убывают с повыщением температуры снижение обычно составляет 1—5% на 1 градус. Так, пределы прочности смазок при повышении температуры от 20 до 50 °С или от 20 до 80 С уменьшаются не более чем в 1,5 и 3 раза соответственно. Здесь не учитываются, конечно, смазки, плавящиеся при температурах ниже 50— 80 °С. Возрастание скорости нагружения несколько увеличивает измеряемый предел прочности. Зависимость предела прочности смазок от скорости нагружения невелика — изменение скорости нагружения в 3840 раз вызывает увеличение предела прочности при 20 °С всего в 2,5 раза. [c.272]


    Из изложенного следует, что битумные пленки, приготовленные описанным выше способом, приближаются по свойствам к твердому телу. Можно считать, что скорость нагружения 2280 гс/с слишком велика, чтобы вызвать вязкое течение. Величина удельной нагрузки зависела от площади пленки, но была относительно невелика. Суммарное время нагружения до максимальной прочности пленки (см. [c.71]

Рис. 3.3. Прочность отдельных волокон ПА-66 н их пучков в зависимости от скорости нагружения [8]. Рис. 3.3. Прочность отдельных волокон ПА-66 н их пучков в зависимости от скорости нагружения [8].
Рис. 7.1. Типичные кривые напряжения, деформации и образования свободных радикалов при деформировании волокон ПА-6 с постоянной скоростью нагружения [4]. Рис. 7.1. <a href="/info/426742">Типичные кривые</a> напряжения, деформации и <a href="/info/6525">образования свободных</a> радикалов при деформировании волокон ПА-6 с <a href="/info/214476">постоянной скоростью</a> нагружения [4].
    На примерах ПА-6 и ПА-66 вначале будет рассмотрено феноменологическое представление образования свободных радикалов в предварительно ориентированных нитях. При испытаниях с постоянной скоростью нагружения в диапазоне значений деформаций от 8 % ДО деформации разрыва образца (16—25%)> которые соответствуют напряжениям 500—900 МПа (рис. 7.1), получен очень сильный рост концентрации довольно [c.189]

    В связи с этим следующие утверждения будут служить основой математического анализа таких экспериментов по (статическому) разрыву цепей, как испытания при ступенчатом деформировании или невысокой скорости нагружения при достаточно низких температурах. [c.192]

    Влияние скорости деформации на разрыв цепи жестко зажатых сегментов следует из выражения (7.2). Чем выше скорость нагружения, тем меньше время i, необходимое для получения определенной деформации, и тем короче временной интервал пребывания напряженной цепи под напряжением u(t), а также меньше вероятность разрыва цепи при данном значении t(i) [7]. На рпс. 7.10 приведены кривые спада числа [c.197]

    Полимерные материалы являются вязкоупругими твердыми телами. Склонность последних к неупругому и пластическому деформированию убывает, когда они испытываются при высоких скоростях нагружения и (или) при низких температурах. Более низкая деформируемость вызывает у прежде вязкого или высокоэластичного полимера хрупкое разрушение. Убедительным доказательством этого факта служит хрупкое разрушение при испытании на удар натурального каучука при температуре жидкого азота. [c.268]


    К Хрупкому происходит В том случае, если температура понижается и (или) скорость нагружения возрастает до необходимого значения. Структурное ослабление, связанное с продолжительной деформацией ползучести, вызывает в конце концов состояние локальной вынужденной эластичности. Поперечная деформация ползучести рассмотренной выше трубы из ПВХ при av — 42 МПа представлена иа рис. 8.34. Хорошо видны характерные участки кривой ползучести мгновенная (упругая) деформация ео, основная фаза уменьшения скорости деформации, вторая фаза постоянной скорости деформации и третья фаза — ускоренной ползучести. В пределах последней фазы скорости ползучести велики, а материал пребывает в состоянии вынужденной эластичности. Подобное состояние обычно легче всего достигается для наиболее сильно напряженного материала, т. е. для образца с наименьшим поперечным сечением. [c.279]

Рис. 2.8. Диаграммы о —Е а —при постоянной температуре опыта Г, но разных скоростях нагружения а о > > Оз > 02 > >1 > Оо) Рис. 2.8. Диаграммы о —Е а —при <a href="/info/94875">постоянной температуре</a> <a href="/info/333504">опыта</a> Г, но <a href="/info/1849816">разных скоростях</a> нагружения а о > > Оз > 02 > >1 > Оо)
    Итак, п левой части уравнения (2.67) мы имеем экспериментально определяемую зависимость изменения деформации Еа от скорости нагружения о5, а в правой — нормированную характеристическую функцию, содержащую ядро ползучести. [c.81]

    На рис. 2.16 представлены диаграммы а —е при различных скоростях нагружения р. Температура при этом сохранялась постоянной. [c.81]

    Если пз данных сопоставимых опытов, выполненных при постоянной скорости нагружения, одинаковом впде нагружения, на [c.102]

    Температура стеклования является более однозначной характеристикой полимера, чем температура хрупкости, но все же и ее значения существенно зависят от метода определения. Температуру стеклования можно определить, наблюдая характер изменения физических свойств полимера с изменением температуры. В зависимости от метода определения, скорости изменения температуры или скорости нагружения образца, его формы и характера деформаций изменяются и результаты определения температуры стеклования. Выше (см. рис, 7) был рассмотрен распространенный метод определения температуры стеклования по характеру изменения удельного объема полимера с изменением температуры (дилатометрическое определение). Широко применяются также методы определения температуры стеклования по кривым зависимости деформации полимера (при постепенном воз растании температуры) от частоты действия силы (метод Алек- [c.41]

    Отсюда следует, что при ламинарном смешении решающим фактором является величина деформации, тогда как скорость деформирования и напряжение не играют никакой роли. Это справедливо в случае смешения материалов, не обладающих пределом текучести (и способных к образованию смесей) [11. Величина напряжения сдвига при этом не имеет значения, поскольку речь идет о степени смешения (разумеется, потребляемая мощность зависит от напряжения сдвига). Если же смешиваются компоненты, которые можно размельчить, только приложив к ним усилия, превышающие их предел текучести, то в этом случае локальные напряжения играют главную роль. Примерами таких компонентов являются агломераты технического углерода и ассоциаты вязкоэластичного полимера. Кроме того, для некоторых систем (в частности вязкоэластичных) очень важными факторами могут быть скорость нагружения и локальные изменения напряжения. Для систем твердое вещество— жидкость такой вид смешения называют диспергирующим смешением [51, а для систем жидкость—жидкость—гомогенизацией. При описании диспергирующего смешения мы будем в дальнейшем использовать термин предельная частица , т. е. наименьшая частица дисперсной фазы в смеси. [c.184]

    Скорость нагружения смазки (v ), г/см -с, в пределах 1,20 0,05 г/см -с, при 1Л0ТИ0СТИ 0,9 г/см вычисляют по формуле [c.176]

    Как отмечалось ранее, разрушения делят на хрупкие и вязкие. Промежуточным между ними является квазихруп-кое разрушение, как наиболее часто встречаюшееся в реальных условиях эксплуатации конструкций. Заметим, что хрупкие разрушения реализуются не только в (природно) хрупких материалах. При определенных условиях пластичные стали могут разрушаться по механизму хрупкого разрушения в результате действия ряда охрупчивающих факторов, которые можно разделить на три основные группы механические (большая жесткость конструкции и напряженного состояния, локальное стеснение деформаций в дефектах и концентраторах напряжений, механическая неоднородность, скорость нагружения и цикличность) внешняя среда (коррозия, радиация, низкая температура) структурные изменения (деформационное старение, распад метастабильных фаз и др.). [c.77]


    Дял воех полимеров хареятерно повышение предела прочности о увеличением скорости нагружения (рис. 9). При этом уменьшается влияние нвупрутих деформаций. [c.28]

    Для изучения этого эффекта Макк [771 измерял силу, отнесенную к единице поверхности, которая необходима для разделения двух стальных пластинок, связанных между собой тонкой битумной пленкой. Сталь была взята потому, что коэффициент ее расширения приблизительно такой же, как и у минеральных агрегатов и она может быть легко отполирована. Пластины имели максимальную не-, однородность поверхности 1,8-10- см, и для обеспечения между сталью и битумом нулевого контактного угла их обработали нафтеновыми кислотами. Для подготовки пленки навеску битума помещали между пластинами при повышенной температуре. Толщину плен-, ки определяли по взятой навеске, продолжительности выдержки в печи и ее температуре, которую изменяли от 120 до 150 После охлаждения до 25 °С определяли прочность пленки путем растягивания пластинок при постоянной скорости нагружения 2280 гс/с. После разрыва при помощи планиметра измеряли площадь, занимаемую битумом на обеих пластинках. Эти данные вместе с величиной взятой навески битума служили для расчета толщины пленки. [c.71]

    Исследования процесса КР в лабораторных условиях проводили Т8КЖС по методике расТ 1жения образцов с постоянной скоростью нагружения (ПСН) при фиксированном значении потенциала по. ризации. [c.29]

    Исследования, проведенные в КБС при скоростях нагружения 3 10 с и дизгазоне наложенных потенциалов -0.3...-0,7 В(ХСЭ) [c.31]

    На о-сновании проведенных исследований, а также экгпериментов с постоянной скоростью нагружения Б.Швейк предположил, что для и1.1зникн0вения КР наряду со статической необходима переменная наг-1 >аь а опоеделенной частоты. [c.40]

    При пневмоиспытаниях объектов в целях безопасности применяют низкие скорости нагружения. Акустико-эмиссионные [c.179]

    Независимо от подобных моделей, опираясь исключительно на статистические соображения, Колеман и Марквардт разработали представляющую интерес теорию кинетики разрушения волокна (рассмотрена в работе [7]). Они особенно тщательно исследовали распределение времени жизни волокна под действием постоянной и переменной нагрузки и влияние его длины, скорости нагружения и размеров пучка на прочность волокна или пучка волокон (рис. 3.3 и 3.4). Следует отметить два статистических эффекта меньщую прочность пучка по сравнению с одиночным волокном (из-за ускоренного роста вероятности его ослабления К после разрыва одного волокна в пучке) и увеличение прочности с ростом скорости нагружения, получаемой в результате уменьщения времени пребывания волокна при последующих значениях нагрузки. В работе [8] определены средние значения прочности при растяжении пучка из 15 одиночных волокон ПА-66 и бесконечно большого пучка волокон. Зависимость прочности от скорости нагружения показана на рис. 3.3. [c.63]

    Механизм нагружения, который не рассматривается в данной монографии, представляет собой деформирование цеппых молекул под действием силы инерции, т. е. через распространяющиеся волны напряжения. Хрупкие термопластичные материалы (ПС, сополимер стирола с акрилонитрилом, ПММА) при скоростях одноосной деформации менее 3 м/с или скоростях деформирования менее 50 с ведут себя классически [30]. В данной области при увеличении скорости деформирования увеличиваются прочностные свойства и уменьшается удлинение. При скоростях деформирования 50—66 с происходит переход к разрушению, вызванному волной напряжения, которая сопровождается десятикратным уменьшением кажущейся работоспособности материала [30]. Скелтон и др. [40] изучили полимеры ПА-6, ПЭТФ и ароматический полиамид (Номекс). Данные волокна также ведут себя классически при температурах окружающей среды и в интервале значений скоростей нагружения 0,01 — 140 с . При температурах —67 и —196°С получено уменьшение прочности, начиная со скорости нагружения 30 с".  [c.146]

    В связи с изучением зависимости энергии поверхности разрушения от скорости нагружения следует напомнить о первых широких применениях испытания на раздир (метод III) (например, [5, 23—28]). При таком виде разрушения материал в области вершины трещины испытывает сложное в значительной степени пластическое деформирование. Не вдаваясь в подробности, МОЖНО отметить, что скорость влияет на степень пластического деформирования (а следовательно, и на поверхность разрушения или энергию раздира) [23—29]. Это влияние связано с максимумами р- и v-релаксацни [5, 23—26]. Как правило, энергии раздира термопластов и каучуков довольно велики, например, для ПС энергия раздира 1 кДж/м , для ПЭ 20—200 кДж/м2, а для различных сополимеров бутадиена 0,1—500 кДж/м [24—26]. Относительно эластомеров Томас [27], а также Ахагон и Джент [28] сообщают, что после введения поправки, учитывающей изменение эффективной площади разрушения, для различных условий эксперимента можно получить общее пороговое значение энергии разрушения То, равное 40—80 Дж/м . Показано, что данная энергия не зависит от температуры и степени набухания в различных жидкостях. Пороговая энергия незначительно убывала с увеличением степени сшивки (образцов полибутадиена). В агрессивной среде (кислород, озон) То существенно уменьшается. [c.357]

    В цитированной литературе рассматриваются другие особенности процесса разрушения, которые могут быть получены с помощью фрактографического анализа. Это — влияние линий Валнера на положение ребер [61, 196, 200], разрушение без образования трещин серебра в ПС с низкой молекулярной массой [155], задержка разрыва трещин серебра при усталости материала (разд. 3.3), пластическое разрушение ПС при более низких скоростях нагружения и при температурах, близких к 7 с, в результате роста одной или более каверн ромбической формы [169], выявление глобулярной структуры путем ионного травления вещества трещин серебра ПС [132] и поверхности ПВХ [208] и особенности поверхности разрушенных образцов фенолформальдегида, напоминающие трещины серебра [195]. [c.403]

    Метод основан на экспериментальном определении диаграмм о —е при постоянной температуре, ио при различных, меняющихся от опыта к опыту скоростях нагруженпя. При этом верхний предел скорости нагружения ограничен такими величинами, при которых в испытываемом образце не возникают волновые [c.79]

    Рпс. 2.К). Диаграммы де-форлтирования органических нитей при различных скоростях нагружения р(И/с) J —0,22-10 2-0,16 3 —0,95-10-3  [c.81]

    При температуре ниже любой noли [ep становится твердым, иногда хрупким. По мере понижения температуры возрастает хрупкость полимера, и он. легко разрушается под действием ударной нагрузки. Температура перехода высокомолекулярных полимеров в хрупкое состояние мало изменяется при возрастании среднею молекулярною веса данного полимера. Температурой хрупкости часто характеризуют морозостойкость полимера.. Значение этоГ величины меняется в зависимости от 1гримененного метода ее определения. С возрастанием скорости нагружения образца хрупкость полимера проявляется при все более высоких температурах, быстрое ох.г1аждение способствует бо.пее длительному сохранению упругости. [c.41]

    В процессах компактирования дисперсных материалов давлением, когда внешние усилия изменяются до конечного значения в течение определенного отрезка времени, для деформированного состояния системы в ряде случаев становится существенным влияние таких факторов, как скорость нагружения и продолжительность силового воздействия. Напряжения и деформации, возникающие при объемном сжатии твердого дисперсного тела давлением, изменяются во времени, даже если нагрузки остаются постоянными. Одна сторона этого явлешш связана с изменением во времени объемной деформации при выдержке под постоянным давлением - объемная ползучесть или последействие, другая - со снижением напряжений при постоянной объемной деформации - релаксацией напряжений. [c.39]


Смотреть страницы где упоминается термин Скорость нагружения: [c.312]    [c.380]    [c.23]    [c.31]    [c.180]    [c.61]    [c.64]    [c.69]    [c.272]    [c.344]    [c.353]    [c.60]    [c.67]    [c.67]    [c.80]    [c.83]    [c.97]    [c.86]   
Структура и прочность полимеров Издание третье (1978) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте