Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование трещин серебра

Рис. 9.8. Образование трещин серебра в политрифторхлорэтилене при постоянной нагрузке [130]. Рис. 9.8. Образование трещин серебра в политрифторхлорэтилене при постоянной нагрузке [130].

    В этом разделе будет рассмотрена главным образом природа одновременного влияния на механические свойства материала механических параметров и параметров окружающей среды. Одно из самых интересных явлений в данной области — образование трещины серебра под действием окружающих условий — будет рассмотрено в заключительной главе. [c.314]

    Уже отмечалось, что ослабление полимерных материалов феноменологически может иметь различный вид — хрупкое разрушение при распространении трещин в образце, пластическое при пластическом деформировании, следующем за пределом вынужденной эластичности при сдвиге, или квазихрупкое разрушение, следующее за нормальным напряжением вынужденной эластичности (образование трещины серебра). Следует ожидать, что различные проявления ослабления материала вызваны различными значениями и видами напряжения. Это означает, что для различных явлений разрушения существуют свои поверхности ослабления, которые могут перекрывать и пронизывать друг друга. Подобные факты широко исследуются и обсуждаются в известной монографии Уорда [20] и в работах [21—34]. [c.67]

    В данной главе не приводятся объяснения явления разрушения на молекулярном уровне. Однако предыдущее обсуждение уже показало, что рассмотрения трехмерного состояния напряжения недостаточно для выяснения возможной роли разрыва цепей и их распутывания при ослаблении полимеров. Это, в частности, справедливо, если учитывать явление образования трещины серебра ( нормальное напряжение вынужденной эластичности ). Тем не менее, прежде чем изучать молекулярные аспекты разрушения, следует продолжить рассмотрение общих немолекулярных теорий. [c.71]

    Явление образования трещины серебра также может рассматриваться как деформационная нестабильность (хотя и локализованная). Это явление будет рассмотрено в заключительной главе. [c.305]

    В гл. 8 была рассмотрена главным образом роль перестройки пространственно-однородного распределения молекулярной структуры в процессе зарождения разрушения. Термин пространственно-однородный означает отсутствие дефектов, включений, трещин или надрезов, размеры которых достаточ.ны, чтобы служить концентраторами напряжений. При таких условиях распределение очагов повреждений и их рост на начальной стадии внешнего нагружения однородно по объему образца. В таком случае неоднородное разрушение определяется как процесс, противоположный однородному разрушению, или как процесс разрушения, вызываемого распространением трещины. В данном случае трещины, надрезы, включения пли сконцентрированные зародыши трещин действуют как концентраторы макроскопического напряжения, которые, по существу, ограничивают дальнейший рост повреждения ближайшим окружением имеющихся там дефектов. Явление образования трещины серебра включено в данную главу в связи с хорошо различимыми в ней структурными неоднородностями и несмотря на тот факт, что новые трещины серебра могут формироваться с увеличением напряжения в произвольных местах, где имеются зародыши. [c.332]


    Образование трещин серебра [c.362]

    Явление образования трещины серебра под действием напряжения растяжения наблюдалось во многих стеклообразных полимерах и в некоторых кристаллических полимерах. По внешнему виду трещины серебра в полимерах (рис. 9.8, а) подобны давно известным очень тонким трещинам, образующимся на поверхностях таких неорганических материалов, как керамика. Однако в отличие от обычных трещин материал в поперечном направлении трещины серебра является непрерывным (рис. 9.8, б, 9.9—9.11). Следовательно, области, содержащие трещины серебра, способны нести нагрузку в отличие от областей с обычными трещинами. Явлению образования трещин серебра в последние 30 лет уделялось все большее внимание. В 1973 г. появились два исчерпывающих обзора [76, 77] по этому вопросу. Литература, приведенная в данной монографии и включающая работы, посвященные явлению образования трещин серебра [78—178], в основном является дальнейшим развитием этих обзоров. [c.362]

    Образование трещин серебра широко исследовалось по ряду причин  [c.362]

    Несмотря на то что было выполнено значительное количество исследований по различным аспектам образования трещин серебра, не существует общего мнения относительно механизма начала их роста. До сих пор не существует приемлемой теоретической модели, с помощью которой можно было бы предсказать, образуются ли в данном полимере при данных условиях трещины серебра или нет. А если это произойдет, то каково влияние температуры и скорости деформирования на образование и распространение трещины серебра. Конечно, это связано с тем, что начало роста трещины серебра зависит одновременно от трех групп переменных, характеризующих соответственно макроскопическое состояние деформаций и напряжений, природу дефектов, создающих неоднородность в материале, и молекулярные свойства полимера при данных температурных условиях и химической среде. Существует пять различных по смыслу моделей процесса возникновения трещины серебра, в которых используются различные определяющие параметры. Эти модели основаны соответственно на разности напряжений, критической деформации, механике разрушения, ориентации молекул и их подвижности. Результаты основных исследований и критерии начала роста трещин серебра, предложенные на основе указанных выше моделей, перечислены в табл. 9.4. [c.367]

    Исследование образования трещин серебра при длительных испытаниях на растяжение [c.368]

    Гидростатическое напряжение подавляет образование трещин серебра [c.368]

    Исследование образования трещины серебра при воздействии двуосного напряжения второй квадрант  [c.369]

    Кинетика роста трещины серебра в метаноле объясняется течением жидкости сквозь пористый материал, содержащий трещины серебра (в котором среднее расстояние между пустотами 0,25 мкм, размер пустот 72 нм, а предел вынужденной эластичности при образовании трещины серебра 9 МПа) [c.369]

    Напряжение образования трещины серебра увеличивается с ростом степени ориентации материала, когда ось растяжения параллельна направлению вытяжки, и уменьшается с ростом степени ориентации, когда эта ось перпендикулярна к направлению вытяжки. [c.370]

    При высоких коэффициентах вытяжки напряжение образования трещины серебра, приложенное параллельно направлению вытяжки, выше предела вынужденной эластичности при [c.370]

    Влияние ориентации молекул на характер образования трещины серебра в полистироле в основном связано со стадией образования зародыша такой трещины  [c.371]

    Время, необходимое для образования трещины серебра, является характеристикой материала (статистической), учитывающей зависимость кинетического процесса от напряжения, отражающей до некоторой степени исходное распределение микроскопических дефектов [c.371]

    Подобное температурное поведение процесса образования трещины серебра и вынужденной эластичности означает, что в обоих случаях изменения конформации молекул и движения основной цепи подобны [c.371]

    Материалы, обладающие наибольшей склонностью к образованию трещин серебра [c.371]

Рис. 9.13. Зависимость напряжений разрыва материала и образования трещины серебра от молекулярной массы полистирола при 25°С [146]. Рис. 9.13. <a href="/info/39640">Зависимость напряжений</a> разрыва материала и образования трещины серебра от <a href="/info/532">молекулярной массы</a> полистирола при 25°С [146].
    Явление нагружения и разрыва молекулярных нитей изучалось различными методами. В большинстве цитированных работ приведены оптические и электронные микрофотографии трещин серебра. Отдельные примеры воспроизведены на рис. 9.8—9.10. Результаты исследований формы трещин серебра методом интерференционной микроскопии обсуждаются в работах [15, 155, 177]. Приведем некоторые результаты, полученные путем измерений тепловых характеристик [31, 50, 184—186], путем анализа влияния молекулярной массы на образование трещин серебра [И, 15, 65, 79, 146, 178], методом акустической эмиссии [174, 188] и методом ЭПР [189—190]. [c.381]


    Ценная информация относительно роли образования трещин серебра при разрушении полимера, конечно, получается [c.385]

    В предыдущих разделах рассматривались основные механические и молекулярные параметры, характеризующие образование трещин серебра, в то время как влияние химической среды не учитывалось. В данном разделе будет дан обзор физико-химической реакции материала, содержащего трещины серебра, при воздействии на него активной химической среды. (Химическая реакция на активную физическую среду, такая, как фотолиз или озонолиз, была рассмотрена в разд. 8.3, либо по этим вопросам там были сделаны ссылки на соответствующую литературу. [c.386]

    Влияние растворителя на образование трещины серебра в зависимости от параметров полимера и параметров растворимости детально изучали Эндрюс и др. [124, 126], а также [c.386]

    Винсент и Раха [123] изучали процессы набухания, образования трещин серебра и обычных трещин в ПММА, ПВХ и ПСУ при контакте последних примерно с 70 различными жидкостями. Они учли не только параметр растворимости ба, но и параметр водородной связи Нов, полученный путем смещения полосы ОО инфракрасного поглощения для СНзОО в присутствии одной из жидкостей и бензола. Была получена лучшая корреляция (хотя и не универсальная) между типом ослабления материала и бя и //оо- [c.388]

    N2, Аг, Оз и СО2 обычно вызывают образование трещин серебра при вынужденной эластичности, тогда как в атмосфере гелия и в вакууме полимеры подвергаются хрупкому разрушению без образования таких трещин  [c.389]

    Даже при таких малых деформациях кажущийся модуль Юнга зависит от скорости деформирования. Это указывает, что Е неоднозначно определяется энергией упругого деформирования угловых связей в цепях, длиной связей и межмолеку-лярными расстояниями, но, кроме этого, характеризуется чувствительностью ко времени смещений атомов и небольших атомных групп. В следующей области деформации (1—5%) напряжение и деформация уже не пропорциональны друг другу. Здесь происходят структурные и конформационные перестройки, которые обратимы механически, но не термодинамически. В этом случае говорят о неупругом (вязкоупругом в узком смысле), или параупругом, поведении. За пределом вынужденной эластичности начинается сильная переориентация цепей и ламеллярных кристаллов, а сам процесс обычно носит название пластическое деформирование . Под чисто пластическим деформированием можно понимать переход от одного равновесного состояния к другому без внутренних напряжений. Последнее особенно важно в связи с тем, что следующая после предела вынужденной эластичности деформация связана главным образом с механически обратимыми неупругими конфор-мационными изменениями молекул, а не с их перемещением друг за другом. До тех пор пока не достигнуто состояние равновесия с помощью соответствующей термообработки, сильно вытянутые образцы могут в значительной степени возвращаться в исходное состояние после снятия напряжения. Исходя из содержания настоящей книги, основное внимание следует уделять не процессам, вызывающим или сопровождающим молекулярную переориентацию (которая в основном понимается как эффект упрочнения), а процессам повреждения, т. е. разрыва цепи, образования пустот и течения. Последние процессы постепенно нарастают в области деформаций сразу же за пределом вынужденной эластичности вплоть до окончательного разрушения. К числу процессов, вызывающих повреждения, следует также отнести явление вынужденной эластичности при растяжении или образование трещины серебра в стеклообразных полимерах, которые будут рассмотрены в гл. 9. [c.38]

    Образование трещины серебра под действием напряжения растяжения представляет собой механическое разъединение полимерных цепей или групп цепей. В материалах, ориентированных вдоль направления растяжения, не образуются грещины серебра [c.365]

    Трещины серебра напоминают пеиу с открытыми ячейками, диаметр полостей и участков полимера которой в среднем равен 20 нм. При дальнейшем растяжении продолжается процесс образования трещин серебра. Уменьшение модуля упругости и предела вынужденной эластичности с увеличением деформации объясняется уменьшением плотности, вызванного этой деформацией, и последующего увеличения коэффициента концентрации напряжения на микроскопических элементах полимера, содержащего трещины серебра. Высокие скорости восстановления материала с трещинами серебра после ползучести определяются в основном его поверхностным натяжением и большой внутренней удельной площадью поверхности таких трещин [c.365]

    Большое число полученных параллельных трещин серебра позволило определить для них кривую напряжение—деформация, которая подобна кривой Камбура и Коппа [83] для случая образования трещин серебра в ПК, погруженного в жидкость (рис. 9.12) [c.366]

    Напряжение вынужден юй эластичности и напряжение обра.эования трещины серебра зависят от темш- ратуры, но зависимость напряжения образования трещины серебра более слабая. Это свидетельствует о том, что при инициировании трещины серебра необходима дополнительная поверхностная энергия образования зародышей пустот [c.371]

    Если применить любой из упомянутых выще критериев к началу роста трещины серебра в пластине с острым надрезом под действием растяжения, то в обоих случаях следует ожидать мгновенного образования такой трещины, поскольку как oi— T2I, так и е имеет особенность на бесконечно острой вершине трещины (см. (9.1) — (9.3)). Подобные оценки противоречили бы экспериментальным результатам. Маршалл и др. [102], а также Нарисава и др. [127] установили, что это связано с начальным коэффициентом интенсивности напряжений Ко, который управляет процессом начала роста трещины серебра на вершине надреза. В случае ПММА и ПК, погруженных в метанол или керосин, существуют критические значения Кт, ниже которых не происходит возникновения трещины серебра и ее роста. Этот факт можно понять с учетом дискретных размеров сегментов цепи и пустот, которые будут формироваться в процессе образования трещины, е учетом того, что плотность накопленной энергии упругой деформации ограничена (рис. 9.3), а также с учетом того, что пластические деформации исключают особенности напряжения. Маршалл и др. [102] на основании своих данных приходят к выводу, что образование трещины серебра происходит в случае, когда в материале у вершины надреза достигаются условия критической деформации или происходит раскрытие трещины. [c.373]

    Липатов и Фабуляк [112] отмечают важность процессов низкотемпературной релаксации, связанных с движениями боковых цепей. В образцах с большим отношением поверхности к объему эти релаксационные процессы смещены в сторону более низких температур. Такое поведение объяснялось менее плотной упаковкой сегментов на поверхности и, следовательно, более свободными движениями молекул. Утверждается, что это облегчает образование трещин серебра. Смещение процессов молекулярной релаксации в сторону более низких температур (в ПК) также наблюдал Сикка [163], который предположил, что это смещение может быть вызвано образованием микропустот. [c.375]

    Измерения тепловых характеристик представляют интерес не только с точки зрения энергетического баланса процесса образования трещины серебра, но также потому, что они позволяют рассчитать рост локальной температуры АТо, вызванный раскрытием и разрывом такой трещины в ПММА. Дёлль [30] предположил, что вначале тепло Qo было сосредоточено в области материала, содержащего трещины серебра. Для значений плотности 0,6 г/см , удельной теплоемкости 1,46 Длс/(г-К), раскрытия трещины серебра 1,65 мкм и Qo = 335 Дж/м он получил АТо = 230 К. Это значение для ПММА соответствует теоретическим оценкам Вейхерта и Шёнерта [185] и данным ИК-измерений Фюллера и др. [184]. Последние определили в интервале значений а от 200 до 600 м/с постоянную величину АТ, равную 500 К. Одновременно регистрируемое увеличение Q(a) означает, что пластическое деформирование у вершины трещины охватывает более обширную область при более высоких скоростях роста трещины. В предварительных экспериментах с ПС получено АТ = 400 К и более низкое количество тепла [184]. Эти значения температур, конечно, велики, хотя и возможны. Они означают, что при таких условиях должно происходить не только плавление, но и термическое разложение материала. В то же время они согласуются с более высокими приращениями температуры (в несколько тысяч граду- [c.382]

    На ранних стадиях исследований отмечалось, что молекулярная масса образца является важной переменной, характеризующей рост трещины серебра и ее разрыв. Радд [79] изучал релаксацию напряжения пленок ПС, находящихся в контакте с бутанолом, вызывающим образование трещин серебра. С помощью графика зависимости а(()/о(0) от логарифма времени обнаружено, что время, необходимое для достижения уровня напряжения 40 %, на три порядка больше для образцов с большей молекулярной массой. Окончательный спад напряжения от 0,4а (0) до нуля происходил достаточно быстро при любых молекулярных массах образцов [79]. [c.383]

    Факт разрыва цепи при разрушении трещины серебра был выявлен на основе предыдущих данных термических, механических и акустических исследований. Его прямое обнаружение методом ЭПР затруднено из-за ограниченного числа трещин серебра, которые одновременно могут достигать условий разрыва. Число разрывов цепе обычно соответствует их числу на одиночной поверхности разрушения. Неизвестно никаких количественных данных относительно возникновения свободных радикалов при образовании трещин серебра. Деври и др. [189] обнаружили очень слабый сигнал ЭПР в нарезанном волокне ПММА, содержащего трещины серебра. Нильсен и др. [190] не обнаружили свободных радикалов в полностью испещренных трещинами серебра, но неразрушенных образцах ПС и сополимера акрилонитрила, бутадиена и стирола. [c.384]

    Физико-химические воздействия жидких сред могут повлиять на начало роста, распространение или разрыв трещины серебра в термопластичном полимере. По-видимому, жидкость должна диффундировать в полимер, чтобы повлиять на начало роста трещины серебра. Нарисава [119] определил критические напряжения ст, образования таких трещин в тонких пленках ПС и ПК, находящихся в контакте с различными спиртами и углеводородами. Он наблюдал, что трещины серебра появляются без существенной задержки по времени и что о,- уменьшается с уменьшением длины цепи растворителя (от 45 до 20 МПа для ПС, от 70 до 50 МПа для ПК). На основании этих результатов он пришел к выводу, что слабое набухание микроскопического слоя поверхности материала является необходимым и достаточным условием, чтобы вызвать образование трещин серебра. Тот же автор получил критерий для ст в виде выражения (8.29) со значениями активационных объемов 1,0—1,3 нм , энергий активации 109—130 кДж/моль и констант скорости (1 —10)-10- С для ПС и (2—50) lO- с- для ПК- [c.386]

    В исследованиях Маршалла и Уильямса и др. [52, 102, 133, 151, 164], Нарисава и др. [127], Китагава и др. [144], а также Кренца и др. [159—160] рост трещин серебра и ползучесть были связаны с параметрами механики разрушения. Грэхем и др. [164] моделировали трещины серебра в ПММА линейной пластической областью, на которую действует напряжение образования трещины Осг- В присутствии активных жидкостей Осг уменьшается от значения на воздухе 100 до 7 МПа (в метаноле), 5 МПа (в этаноле и пропаноле) и 10 МПа (в бута-ноле). Установлено, что между Кт и Осг имеется явная линейная связь. Авторами работы [164] получено единственное значение размера трещины серебра при ее образовании (т. е. непосредственно перед началом ее роста), составляющее 11,5 мкм. Подобные исследования влияния растворителей на образование трещин серебра в ПС методами механики разрушения были выполнены Кренцем и др. [159—160] с помощью голографической интерферометрии. [c.388]

Рис. 9.23. Медленный рост обычной трещины после образования трещины серебра в блоке полипропилена, содержащем крупные и мелкие сферолиты. (С разрещения Фридриха, Бохум.) Рис. 9.23. <a href="/info/594655">Медленный рост</a> обычной трещины после образования трещины серебра в блоке полипропилена, содержащем крупные и мелкие сферолиты. (С разрещения Фридриха, Бохум.)

Смотреть страницы где упоминается термин Образование трещин серебра: [c.13]    [c.24]    [c.215]    [c.294]    [c.362]    [c.375]    [c.377]    [c.382]    [c.385]    [c.387]    [c.389]   
Смотреть главы в:

Разрушение полимеров -> Образование трещин серебра




ПОИСК





Смотрите так же термины и статьи:

Образование серебра

Трещины серебра



© 2025 chem21.info Реклама на сайте