Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиентная оптимизация процессов, метод

    Методы нелинейного программирования объединяют различные способы решения оптимальных задач градиентные, безградиентные, случайного поиска и др. Они применяются для оптимизации как детерминированных, так и стохастических процессов. [c.249]

    Такая задача оптимизации решается с помощью методов нелинейного математического программирования. Очень часто методы определения экстремума нелинейной функции при наличии ограничений на оптимизируемые параметры делят по признаку организации процесса поиска на методы слепого поиска и методы направленного поиска. К методам слепого поиска относятся [30] метод сплошного перебора вариантов (метод прямого упорядочения вариантов по критерию эффективности) и метод статистических испытаний (метод Монте-Карло) [24]. К методам направленного поиска относятся градиентный метод, метод наискорейшего спуска, метод покоординатного спуска и другие. [c.360]


    Часто рекомендуется процесс оптимизации осуществлять в два этапа методом случайного поиска в области, далекой от минимума (максимума), и градиентным методом при приближении к зоне оптимума. [c.363]

    Методы направленного поиска позволяют избежать этого недостатка. Рассмотрим градиентный метод для определения экстремума функции 5 (с(жо), Т хо), и,(Хо), с х), Т(х), v,(x), f(r, х), Vi r, х), Р х)) при отсутствии каких-либо ограничений. Процесс оптимизации по методу градиента заключается в определении направления наискорейшего изменения функции и некотором перемещении по этому направлению в прямую или обратную сторону. Направление наискорейшего изменения функции определяется направлением вектор-градиента оптимизируемой функции. Существенной чертой определения наискорейшего изменения является численное вычисление производных функций д /дс ха), д 1дТ хо), d ldv, xa),. .., которое производится следующим способом д 1ду х ) = [ с хо),. .., yi(Xo)+At/i,. .., Ui(Xo), с(х), Т(х), u x), f r, х), Уг г, х), Р х),. . . ) с Хо), У Х ), , UiUo), с, Т, UJ, /, U2, -.. )]/A /j, где Ai/j— приращение по оптимизируемому параметру, шаг изменения у, у, может быть любым из (Xo), Т Хо), vJ Xa),. ... в качестве шага по оси у выбирают [c.361]

    Отражено современное состояние работ в области тонкослойной хроматографии (ТСХ) - распространенного и эффективного метода исследования органических и неорганических соединений. Рассмотрена теория хроматографического процесса в тонком слое. Описаны подходы к эффективности метода в зависимости от влияния различных факторов, подходы к оптимизации процесса, новые приемы в технике работы, аппаратура, сорбенты, растворители и их свойства. Большое внимание уделено градиентным методам и переносу условий разделения смесей в ТСХ на колоночный вариант хроматографии, а также количественной оценке тонкослойных хроматограмм. [c.2]

    Разбираемые ниже способы оптимизации отдельных блоков связаны в основном с реализацией градиентных алгоритмов поиска посредством метода сопряженного процесса. Обзор сообщений и различных результатов по оптимизации процессов, описываемых уравнениями в частных производных (для случая одного блока), можно найти в работах [49, 501. [c.206]

    Методы направленного поиска. Для оптимизации адсорбционных установок и их отдельных элементов с большим числом оптимизируемых параметров и варьируемых факторов могут быть применены методы направленного поиска оптимума градиентные, наискорейшего спуска, покоординатного спуска и др. Характерной чертой этих методов является использование в процессе решения задачи результатов каждого данного шага (иногда также и предыдущих шагов) поиска оптимальной точки для определения направления изменения оптимизируемых параметров на каждом следующем шаге. При этом значение минимизируемой функции систематически уменьшается. Тем самым вместо рассмотрения большого количества вариантов происходит направленный анализ относительно малого числа ва- [c.127]


    Оптимизация процесса с помощью факторных планов Бокса очень широко применяется на практике и носит название метода Бокса — Уилсона. Постановка задачи здесь в принципе отличается от предыдущей необходимо кратчайшим путем выйти в район оптимума, причем описание поверхности отклика по дороге к оптимуму вовсе не обязательно. Метод Бокса — Уилсона является по своей природе градиентным методом, основанным на том, что направление кратчайшего пути к оптимуму — линии наиболее крутого спуска или подъема — совпадает с направлением градиента к исследуемой поверхности. [c.443]

    Анализ приведенных способов выбора шага в градиентном методе спуска к точке минимума не позволяет сделать однозначного заключения о безусловных преимуществах какого-либо одного из них. Причины этого достаточно очевидны. С одной стороны, от выбранного способа определения шага зависят сходимость вычислительного процесса, выражающаяся через число шагов, необходимых для достижения точки оптимума, и соответственно время счета на ЭВМ. С этой точки зрения более целесообразными являются два последних из рассмотренных способов, обеспечивающие решение задачи оптимизации за минимальное число шагов. Но, с другой стороны, эти последние способы определения шага весьма сложны и могут потребовать значительного времени для расчета на ЭВМ собственно шага. Поэтому выбор способа определения шага должен осуществляться в каждом конкретном случае решения той или иной задачи с учетом инженерной специфики объекта оптимизации, объема задачи, требований к точности решения, характеристик используемой ЭВМ и других факторов.  [c.133]

    Рассмотрим градиентный метод для простейшего случая определения экстремума функции многих переменных 3(л ь Хг,..., Хп) при отсутствии каких-либо ограничений. Процесс оптимизации по методу градиента заключается в определении направления наискорейшего изменения функции 3 и в некотором перемешенин по этому направлению в прямую или обратную сторону. Направление наискорейшего изменения функции определяется направлением вектор-градиента оптимизируемой функции, которое всегда совпадает с направлением возрастания функции. Компонентами градиента дЗ/дХ° в какой-либо точке рассматриваемой области, заданной параметрами (л °, х°,. ... л °), являются частные производные функции д31дх°, дЗ дх, д31дх°. Отметим, что градиент дЗ/дХ° всегда перпендикулярен к поверхности равных значений функции 3 в рассматриваемой точке. [c.128]

    Преимущества градиентного метода оптимизации по сравнению с методом случайного поиска возрастают в случае организации процесса спуска с переменным рабочим шагом. Для этого случая в процессе случайного поиска среднее приращение функции 3(Х) на один расчет в 2л/(и + 1) раз меньше, чем при градиентном методе. Напомним, что п — число оптимизируемых параметров X. Указанные результаты сопоставления детерминированного и случайного способов поиска, естественно, полностью справедливы только для условий выполнения расчетов [56]. Тем не менее, они позволяют сделать вывод о нецелесообразности применения метода случайного поиска для оптимизации непрерывно изменяющихся параметров адсорбционных установок, т. е. там, где возможно использование детерминированных методов направленного поиска (градиентного и др.). Вместе с тем принцип случайного поиска обладает важными преимуществами во-первых, алгоритмы, его реализующие, менее чувствительны, чем детерминированные методы, к наличию неглубоких локальных минимумов, и, во-вторых, некоторые алгоритмы случайного поиска позволяют определить точку абсолютного минимума. [c.136]

    В табл. 26 приведены результаты сравнения двух способов вычисления производных целевой функции [критерий (IV, 147) ]. Использовались следующие три метода безусловной оптимизации без-градиентный Гаусса—Зейделя, наиекорейшего спуска и ОРР. Применение метода сопряженного процесса позволяет сократить число вычислений целевой функции приблизительно в четыре раза. Для учета ограничений использовался метод штрафов, при котором проводилась безусловная минимизация функции (IV, 47) для некоторой последовательности значений параметров а, где г —номер итерации метода штрафов (г = О, 1,2,. ..) а = да  [c.162]

    Градиентные методы Наиболее общие методы оптимизации линейных и нелинейных функций без ограничений и с линейными и нелинейными ограничениями. Большинство сложных процессов химической технологии отдельных объектов и каскада аппаратов с перекрестными связями [c.118]

    Определенную направленность в процессе поиска абсолютного минимума функции 3 обеспечивает применение метода оврагов . Сущность этого метода заключается в использовании информации о минимизируемой функции для выбора положения новой начальной (исходной) точки после получения нескольких (не менее двух) локальных минимумов. Процесс поиска локального минимума при этом осуществляется одним из обычных методов, например градиентным. Реализуется метод оврагов следующим образом. Все оптимизируемые параметры разбиваются на две группы к первой относятся те параметры, изменение которых существенно влияет на измененне функции цели, ко второй— те, варьирование которых ненамного изменяет значение 3. Такое разбиение должно производиться либо заранее, либо в процессе поиска. В методе оврагов локальные уменьшения функции цели за счет оптимизации параметров первой группы [c.154]


    Арис [1, 2] дает введение к использованию динамического программирования для оптимизации дискретных и непрерывных процессов и рассматривает применение этого метода к широкому классу реакторов. Четкое описание способов использования классического вариационного исчисления для определения наилучшего распределения температур в реакторах с принудительным движением потока дано Катцем [5]. Катц показал, что применение динамического программирования к этой задаче приводит к дифференциальному уравнению в частных производных. Рассмотренные в предыдущей главе доклады Хорна посвящены применению градиентного [c.381]


Смотреть страницы где упоминается термин Градиентная оптимизация процессов, метод: [c.136]   
Методы кибернетики в химии и химической технологии (1971) -- [ c.142 , c.153 , c.154 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.142 , c.153 , c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Градиентная оптимизация процессо

Градиентная оптимизация процессо методом

Метод оптимизации

Метод оптимизации процессов

Методы градиентные

Оптимизация процессов

Оптимизация процессов оптимизация



© 2025 chem21.info Реклама на сайте