Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аланин в гормонах и ферментах

    АМИНОКИСЛОТЫ. Производные карбоновых кислот, в которых один или два атома углеводородного радикала замещены аминогруппой NHj. Входят в состав белков, которые являются полимерами А. По числу карбоксильных групп (СООН) различаются moho- и дикарбоновые А., по числу аминных групп различаются MOHO- и диаминовые А. В зависимости от положения аминогрупп различают альфа-, бета- и гамма-кислоты. Получаются синтетически или выделяются из белков. А. занимают центральное место в обмене азотистых соединений в животных, растениях и микроорганизмах, так как служат источником образования белков, гормонов, ферментов и многих других соединений. В настоящее время известно более 90 природных А. В белках содержится лишь около 20 А. Растения и автотрофные микроорганизмы способны синтезировать все входящие в их состав А. Животные могут синтезировать лишь следующие А. аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, гистидин, глицин, серин, тирозин, цистеин, цистин и так называемые иминокислоты — пролин и оксишролин. А., которые могут синтезироваться в организме животных, называются заменимыми. Для всех видов животных безусловно незаменимыми являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, валин, изолейцин. Ряд А. используется в кормлении с.-х. животных. [c.22]


    В главе 25 уже было дано определение незаменимых аминокислот — кислот, которые человек получает из пищи. Сам организм не может синтезировать эти кислоты или синтезирует их слишком медленно в количестве, недостаточном для построения гормонов, ферментов и других специфических молекул. Эти кислоты не способны к восстановительному аминированию или переаминирова-нию. Лизин и треонин, очевидно, необратимо дезаминируются. В молекулах валина, лейцина и изолейцина содержатся разветвленные цепи, в молекуле фенилаланина — бензольное кольцо, в молекуле триптофана — ядро индола. Такие разветвленные цепи и кольца необходимы организму, но не могут быть синтезированы в нем. Не происходит в животном организме и конденсации индола с аланином. [c.346]

    Разработанные в последние годы методы селективного гидролиза, разделения и идентификации открыли новые возможности для химического изучения структуры полипептидов и белков. Как уже указывалось, эти природные продукты включают разнообразный материал антибиотики, гормоны, токсины, ферйенты,. вирусы, волокна и т. д. Хотя за короткий период времени был достигнут большой прогресс в выяснении структуры различных природных продуктов, работа по установлению химической структуры белков в значительной степени осложнена их макромолеку-лярной природой. Изучение последовательности аминокислот в полипептидах и белках показывает наличие в них своеобразных группировок аминокислот. Например, из семи основных аминокислот, имеющихся в АКТГ, четыре расположены по соседству, а все семь включены в последовательность из 14 аминокислот из семи кислых аминокислот, ирисутствуюпщх в этом гормоне, три находятся по соседству друг с другом. В рибонуклеазе три остатка серина и три остатка аланина находятся рядом аналогична располагаются три ароматические аминокислоты в инсулине. Для ряда ферментов — тромбина, трипсина, химотрипсина и фосфоглюкомутазы было отмечено наличие одинаковой последовательности из шести аминокислот. Отмечено, что в структуре-и механизме действия протеолитических ферментов важную роль играют определенные трипептиды [160]. В настоящее время из-за ограниченности наших знаний относительно точного молекулярного механизма действия гормонов и ферментов можно делать только предположения о значении тёх или иных аминокислотных группировок. Вопрос о связи определенной последовательности аминокислот с функциями различных соединений может быть выяснен лишь по мере накопления экспериментального материала. Тем самым, по-видимому, станет возможным значительно более полное понимание механизма действия природных соединений на молекулярном уровне. [c.418]


    Стабильность цитокининов в растении невысока, время полураспада зеатина составляет в зависимости от вида растения и его органа от 6 до 20 ч. Скорость разрушения в молодых тканях ниже, чем в старых. Медленнее всего этот процесс идет в корнях. Деструкция цитокининов начинается с конъюнгирования с сахарами (рибоза, глюкоза) и аминокислотой аланином. При этом путь образования О-глюкозидов цитокинина можно рассматривать как запасание этого гормона, а другие — как необратимую деструкцию. Недавно открыт фермент цитокининоксидаза, окисляющий цитокинин без предварительного гликозидирования. Окисление при этом происходит по месту присоединения алифатической части к аденину. [c.337]

    Г люкокортикоидные гормоны усиливают глюконеогенез путем повышения количества (и активности) ряда ключевых ферментов в печени. Подробно изучена индукция отдельных ферментов (аланин-аминотрансферазы, триптофаноксигеназы и тирозин-аминотрансферазы), которые катализируют ско-рость-лимитирующие этапы деградации аминокислот. На этих примерах было показано, как глюкокортикоиды регулируют транскрипцию генов, одна- [c.214]

Рис. 22.2. Ключевые ферменты, участвующие в регуляции гликолиза, глюконеогенеза и метаболизма гликогена в печени. Указанное на схеме место действия гормона не предполагает прямого влияния на соответствующий фермент. Влияние сАМР на фосфофруктокиназу-1 и на фруктозо-1,6-бисфосфатазу осуществляется путем сочетания ковалентной модификации и аллостерического эффекта (см. рис. 22.4). Аланин в высоких концентрациях ингибирует гликолиз на стадии, катализируемой пируваткиназой, и, таким образом, действует как сигнал глюконеогенеза . Рис. 22.2. <a href="/info/327791">Ключевые ферменты</a>, участвующие в <a href="/info/187144">регуляции гликолиза</a>, глюконеогенеза и метаболизма гликогена в печени. Указанное на <a href="/info/1753139">схеме место</a> <a href="/info/97776">действия гормона</a> не предполагает <a href="/info/1897060">прямого влияния</a> на <a href="/info/1321604">соответствующий фермент</a>. <a href="/info/102531">Влияние сАМР</a> на фосфофруктокиназу-1 и на фруктозо-1,6-<a href="/info/510944">бисфосфатазу</a> осуществляется путем <a href="/info/512083">сочетания ковалентной</a> модификации и <a href="/info/31031">аллостерического эффекта</a> (см. рис. 22.4). Аланин в <a href="/info/330627">высоких концентрациях</a> ингибирует гликолиз на стадии, катализируемой пируваткиназой, и, <a href="/info/461013">таким образом</a>, действует как сигнал глюконеогенеза .
    В результате замены гистидина на аспартат в положении 10 В-цепи инсулина образуется гормон, который связывается инсулиновым рецептором плазматической мембраны почти в пять раз более эффективно, чем нормальный инсулин. Соответствующая мутация обнаружена у больных семейной гинернроинсулинемией. Цитохром с содержит консервативный остаток фениланалина в цитохроме с дрожжей это остаток 87 (рис. 111.8). Когда в результате мутации фенилаланиновый кодон ТТТ заменяется на глициновый GGT, цитохром с сохраняет свою активность, но его способность к переносу электронов на цитохром с-нероксидазу существенно снижается. Субстратсвязывающий центр протеолитического фермента трипсина содержит в положении 226 остаток глицина. Как показывают структурные исследования, замена этого остатка на более объемную аминокислоту аланин может приводить [c.360]


Смотреть страницы где упоминается термин Аланин в гормонах и ферментах: [c.166]    [c.234]    [c.87]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Аланин

Гормоны



© 2025 chem21.info Реклама на сайте