Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликолиз регуляция

Рис. 15-16. Гидравлическая модель, поясняющая роль пункта перекреста в регуляции гликолиза, протекающего в мышце. Измерение концентраций последовательных промежуточных продуктов гликолиза в активной интактной мышце (А) и в мышце, находящейся в состоянии покоя (Б), позволяет выявить регулируемый этап этого процесса. Пункт перекреста-это реакция, катализируемая ферментом, для которого при переходе мышцы из активного состояния в состояние покоя концентрация субстрата возрастает, а концентрация продукта (продуктов) снижается. В данном случае пунктом перекреста служит реакция, катализируемая фосфофруктокиназой (ФФК), от которой зависит скорость образования пирувата. Рис. 15-16. <a href="/info/770900">Гидравлическая модель</a>, поясняющая роль <a href="/info/102892">пункта перекреста</a> в регуляции гликолиза, протекающего в мышце. Измерение <a href="/info/1048196">концентраций последовательных промежуточных продуктов</a> гликолиза в активной интактной мышце (А) и в мышце, находящейся в состоянии покоя (Б), позволяет выявить <a href="/info/1828541">регулируемый</a> этап <a href="/info/1757866">этого процесса</a>. <a href="/info/102892">Пункт перекреста</a>-это реакция, катализируемая ферментом, для которого при переходе мышцы из <a href="/info/301468">активного состояния</a> в состояние покоя <a href="/info/879417">концентрация субстрата</a> возрастает, а <a href="/info/335985">концентрация продукта</a> (продуктов) снижается. В данном случае <a href="/info/102892">пунктом перекреста</a> служит реакция, катализируемая фосфофруктокиназой (ФФК), от <a href="/info/685547">которой зависит скорость</a> образования пирувата.

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, которое носит название сахарный диабет повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. Мышечная ткань при этом утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы—наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Следует отметить, что индукторами [c.359]

    Схема регуляции гликолиза и цикла трикарбоновых кислот (см также [c.325]

Рис. 17-29. Взаимозависимая регуляция гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования, определяемая относительными концентрациями АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При высокой концентрации АТР и соответственно при низких концентрациях ADP и АМР скорости гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре процесса ускоряются. Взаимосвязь гликолиза и цикла лимонной кислоты, осуществляемая через цитрат (она также показана на этой схеме), дополняет регуляторное действие аденилатной системы. Кроме того, при повышении концентраций NADH и ацетил-СоА подавляется процесс окисления пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат. Рис. 17-29. Взаимозависимая регуляция гликолиза, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a>, определяемая <a href="/info/13570">относительными концентрациями</a> АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При <a href="/info/330627">высокой концентрации</a> АТР и соответственно при <a href="/info/334174">низких концентрациях</a> ADP и АМР <a href="/info/98619">скорости гликолиза</a>, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a> минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре <a href="/info/987728">процесса ускоряются</a>. Взаимосвязь гликолиза и <a href="/info/71266">цикла лимонной кислоты</a>, осуществляемая через цитрат (она также показана на этой схеме), дополняет <a href="/info/1392706">регуляторное действие</a> аденилатной системы. Кроме того, при <a href="/info/105394">повышении концентраций</a> NADH и ацетил-СоА подавляется <a href="/info/89524">процесс окисления</a> пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат.

    В качестве еще одного примера регуляции этого типа можно привести превращения, протекающие при работе мышц. Источником АТФ, необходимой для интенсивной мышечной деятельности, является превращение глюкозы. На первой фазе глюкоза в результате цепи гликолитических превращений образует пируват. Однако дальнейшее окислительное превращение пирувата требует адекватной доставки в мышцы кислорода. Если создается дефицит последнего, то в мышечной ткани накапливаются пируват и восстановленный никотинамидный кофермент. В результате действия мышечной лактат дегидрогеназы происходит их превращение в NAD и лактат, что обеспечивает регенерацию NAD, необходимого для дальнейшего течения гликолиза, и образование некоторого количества АТФ в результате фосфорилирования АДФ дифосфоглицератом и фосфоенолпирува-том. В мышцах при этом начинает накапливаться молочная кислота. После окончания периода интенсивной мышечной деятельности образование NAD-H существенно замедляется и доставка кислорода в мышцы обеспечивает необходимый масштаб функционирования цепи переноса электронов, основная часть NAD-H переходит в NAD и та же лактат дегидрогеназа обеспечивает постепенное превращение накопившегося лактата в пируват, который через стадию окислительного декарбоксилирования поступает на конечное сжигание в цикле трикарбоновых кислот. [c.422]

    Продолжение процесса - еще одно фосфорилирование с участием АТФ, - снова требует энергии, и к этому моменту уже затрачено 2 моль АТФ. Под влиянием фермента фосфофруктокиназы образуется фруктозо-1,6-дифосфат. Это - ключевая реакция процесса и от ее регуляции зависит скорость всего гликолиза в целом. [c.79]

    Во второй части рассматриваются биоэнергетика и метаболизм клеток- основное блюдо биохимии. После изложения принципов клеточной биоэнергетики следует детальное описание гликолиза, цикла трикарбоновых кислот, транспорта электронов и окислительного фосфорилирования. Далее идут главы, в которых рассматривается катаболизм жирных кислот и аминокислот, а затем главы, посвященные биосинтетическим процессам и фотосинтезу. Подробно обсуждаются метаболические последовательности и принципы их регуляции. [c.8]

    Таким образом, критическим фактором в регуляции этого фермента, так же как и многих других ферментов, участвующих в процессах гликолиза и глюконеогенеза, является стадия фосфорилирования адениловой системы. Имеются основания считать, что эту первую и наиболее важную стадию гликолиза включает АМР. Состояние адениловой системы оказывает влияние также на последующие стадии при гликолизе и в цикле трикарбоновых кислот. Таким образом, уменьшение концентрации АТР вызывает ингибирование процесса окисления пирувата и изоцитрата. Кроме того, в начальной стадии фосфоролиза гликогена и при окислении триозофосфатов необходимо наличие неорганического фосфата. Следовательно, быстрое потребление АТР клеткой (например, при мышечном сокращении) приводит к уменьшению концентрации АТР и увеличению концентрации АМР и Pi. Все эти изменения активируют процесс гликолиза. Однако, если мышечная активность прекращается и содержание АТР возрастает, наблюдается ингибирование сразу нескольких стадий гликолиза (рис. 11-11). [c.511]

    Было высказано предположение, что концентрация ионов Mg +, так же как и концентрация ионов Н+, остается в состоянии подвижного равновесия с сывороткой крови . Тем не менее, по-видимому, возможны ситуации, когда происходят по крайней мере временные изменения концентрации свободных ионов Mg + и свободных ионов Н+б. При быстром катаболизме углеводов гликолиз может привести к закислению мышечных клеток, причем значение pH может падать от 7,3 до 6,3. Падение pH вызывает значительное снижение степени связывания Mg + с такими молекулами, как АТР, и временное увеличение концентрации ионов Mg +. Подобным образом высвобождение дифосфоглицерата из комплекса с гемоглобином при оксигенацни приводит к снижению концентрации свободного Mg +, так как последний связывается с дифосфоглицератом . Эти изменения концентрации свободного Mg + могут иметь большое значение в метаболической регуляции .  [c.130]

    Регуляция гликолиза и гликогенолиза [c.250]

    Гликолиз почти универсален как один из центральных путей катаболизма глюкозы он выполняет эту роль не только в животных и растительных клетках, но также и у многих микроорганизмов. Последовательности гликолитических реакций различаются у разных организмов только характером регуляции их скорости, а также метаболической судьбой образующегося пирувата. [c.439]

    Во всех клетках гликолиз регулируется с очень высокой эффективностью, напоминающей действие компьютера, а потому изменения концентрации различных метаболитов могут влиять на его общую скорость. Столь сложная регуляция не должна вызывать у нас удивление, поскольку гликолиз-древнейший катаболический путь, занимающий центральное место в метаболизме. [c.466]


    Важно иметь в виду и два других обстоятельства, касающихся регуляции гликолиза и вообще любого метаболического пути. 1) Регулируемые этапы какого-либо метаболического пути при внутриклеточных условиях обычно необратимы. Фосфорилаза, гексокиназа, фосфофруктокиназа и пируваткиназа-все эти ферменты катализируют реакции, сопровождающиеся в условиях клетки значительным уменьшением свободной энергии и потому практически необратимые. [c.468]

    Из гл. 15 мы знаем, что скорость гликолиза регулируется на двух уровнях. В первую очередь регулируется, как мы видели, сама подача топлива для гликолиза. В этой регуляции участвуют два регуляторных фермента, контролирующих вхождение глюкозы в последовательность гликолитических реакций,— гексокиназа, катализирующая фосфорилирование D-глюкозы с образованием глюкозо-6-фосфата, и гликоген-фосфорилаза, катализирующая первый этап образования глюкозо-6-фосфата из гликогена. Скорость цикла лимонной кислоты [c.493]

    Н е й ф а X С. А. Динамическая структура внутриклеточных механизмов и регуляция активности ферментов гликолиза в клетке. В кн. Механизм и кинетика ферментативного катализа. Изд-во Наука М., 1964. [c.290]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    Более сложные механизмы регуляции О.в. обусловлены прямыми и обратными управляющими связями. Суть их состоит в воздействии метаболитов на интенсивность биохим. процессов, в к-рых они сами образуются или испытывают превращения. В О.в. регуляция активности ферментов часто осуществляется посредством аллостерич. взаимод. ферментов с субстратами или промежут. продуктами (см. Ферменты). Классич. пример подобной регуляции с отрицат. обратной связью-подавление изолейцином собств. биосинтеза в результате его аллостерич. взаимод. с ферментом треониндегидратаза, катализирующим начальную р-цию пути биосинтеза изолейцина. Пример положит, прямой связи-стимуляция синтеза фосфоенолпирувата в гликолизе предшествующими метаболитами фруктозо-1,6-дифосфатом, глюкозо-6-фосфатом и глицеральдегид-З-фос-фатом. Управляющие связи такого рода позволяют стаби- [c.317]

    При раковых заболеваниях, саркомах, лейкозах резко изменяется природа биологического дыхания клеток, изменяется соотношение гликолиза и дыхания, наблюдается изменение интенсивности внутриклеточного метаболизма и его регуляции — изменение пастеровского эффекта и Кребтри-эффекта. [c.146]

    Среди тысяч энзимов, присущих микроорганизмам, одни, например ферменты гликолиза, синтезируются постоянно и их образование не зависит от состава питательной среды. Такие ферменты называют конститутивными. Другие энзимы, адаптивные или инду-цибельные, возникают только в ответ на появление в питательной среде индукторов — субстратов или их структурных аналогов. Так, добавление -галакгозида — лактозы к питательной среде, на которой культивируются клетки кишечной палочки Е. соН, вызывает мгновенное появление -галактозидазы в них, биосинтез которой в последующий период времени возрастает в 10 ООО раз. Установлено, что регуляция объема биосинтеза ферментов осуществляет- [c.35]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]

    Секретин, как и глюкагон, вазоактивный интестинальный пептид, гастрин, гастроингибирующий пептид и ряд других, относится к гормонам желудочно-кишечного тракта. Считается, что основная роль секретина состоит в регуляции секреции сока поджелудочной железы [219], куда он попадает с током крови и где также оказывает стимулирующий эффект на секрецию инсулина [220, 221]. Позднее был выявлен ряд других функций секретина в пищеварительной системе. Оказалось, что он стимулирует выделение пепсина желудком и бикарбонатов и воды поджелудочной железой и печенью, влияет на сокращение пилорического канала, торможение моторики желудка, приводит к ослаблению электрической активности тонких кишок, усилению кровотока в поджелудочной железе, интенсификации липолиза и гликолиза в жировой ткани, торможению реабсорбции бикарбонатов в почках и т.д. [222]. [c.372]

    Показано, что глюконеогенез может регулироваться и непрямым путем, т.е. через изменение активности фермента, непосредственно не участвующего в синтезе глюкозы. Так, установлено, что фермент гликолиза пируваткиназа существует в 2 формах—L и М. Форма L (от англ. liver—печень) преобладает в тканях, способных к глюконеогенезу. Эта форма ингибируется избытком АТФ и некоторыми аминокислотами, в частности аланином. М-форма (от англ. mus le—мыщцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит ингибирование L-формы пируваткиназы. Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеогенезу. [c.343]

    При многих патологических состояниях, в частности при сахарном диабете, отмечаются существенные изменения в функционировании и регуляции системы Ф-2,6-Р,. Установлено, что при экспериментальном (стептозотоциновом) диабете у крыс на фоне резкого увеличения уровня глюкозы в крови и моче в гепатоцитах содержание Ф-2,6-Р, снижено. Следовательно, снижается скорость гликолиза и усиливается глюконеогенез. Данный факт имеет свое объяснение. Возникающие у крыс при диабете нарушения гормонального фона увеличение концентрации глюкагона и уменьшение содержания инсулина—обусловливают повышение концентрации цАМФ в ткани печени, усиление цАМФ-зависимого фосфо- [c.554]

    Обходный путь требуется для превращения пирувата в фос фоенолпируват. . . . . Второй обходный путь в ГЛЮ конеогенезе-это превращение фруктозо-1,6-дифосфата во фрук-тозо-6-фосфат. . . . . Третий обходный путь-это путь, ведущий от глюкозо-6-фосфата к свободной глюкозе. . . . Глюконеогенез требует значительных затрат энергии. . . Реципрокная регуляция глюконеогенеза и гликолиза. . , . Промежуточные продукты цикла лимонной кислоты являются также предшественниками глюкозы. ........ [c.729]

    Важную роль в регуляции глюконеогенеза играет другой регуляторный фермент — фруктозо-1,6-дифосфатаза, ингибитором которой является АМФ. Таким образом, при высоком отношении АТФ/АМФ происходит активация глюконеогенеза и ингибирование гликолиза, так как АТФ является ингибитором фермента фосфофруктокииазы, катализирующей обратную реакцию, т. е. образование из фруктозо-6-фосфата фруктозо-1,6-дифосфата. [c.276]

    Часто бывает также, что эта регуляция, которая может быть как положительной (активация), так и отрицательной (ингибирование), осуществляется одним из конечных продуктов данной цепи реакций. По этой причине ингибиторный тип регуляции был назван ингибированием по типу обратной связи, или ретроингибированием (см. рис. 15.9. Р А —> В Р —> В С). Такое ингибирование первых этапов катаболизма (или противоположный процесс — активация) основано на аллостерических эффектах. Примером аллостерического ингибирования являются ферменты, катализирующие ключевые этапы, например, изоцитратдегидрогеназа в цикле трикарбоновых кислот, фосфофруктокиназа в гликолизе, фосфори-бизилпирофосфатсинтетаза в синтезе пуриновых нуклеотидов и многие другие. [c.462]

    Регуляция фруктозодифосфатазы и фосфофруктокиназы. Как влияет повышение концентраций АТР и АМР на каталитическую активность фруктозодифосфатазы и фосфофруктокиназы Как сказываются эти эффекты на относительной величине потока метаболитов в глюконеогенезе и гликолизе  [c.619]

    Эффект Пастёра, изученный на яблоках Блекменом и Парийя [4], по мнению многих физиологов растений, проявляется при ресинтезе углеводов из органических кислот. Вычисления отношения [АТФ]/[АДФ], необходимого для заметного снижения скорости гликолиза, дали значения, приблизительно в 1000 раз большие, чем наблюдавшиеся в действительности. Следовательно, отношение [АТФ]/[АДФ] не может осуществлять эффективную регуляцию дыхания. Окислительное фосфорилирование могло бы уменьшить концентрацию АДФ до столь низкого уровня, при котором скорость гликолиза была бы ограниченной. Следовательно, происходило бы [c.245]

    Эту главу мы посвятим рассмотрению гликолиза-процесса., в ходе которого молекула глюкозы, построенная из шести углеродных атомов, расщепляется ферментативным путем, в десяти последовательных реакциях до двух молекул пирувата, содержащих по три углеродных атома. На протяжении этой последовательности реакций значительная часть энергии, высвободившейся из глюкозы, запасается в форме АТР. Гликолиз (от греч. glykys-сладкий и lysis-распад, разложение) изучен лучше других центральных метаболических путей, и потому мы рассмотрим его здесь достаточно подробно в основе функционирования и регуляции этого процесса лежат некие общие принципы, характерные для всех метаболических путей. Мы обсудим здесь также пути, питающие гликолиз, т.е. пути, ведущие к нему от гликогена, дисахаридов и моносахаридов. [c.439]

    Выше мы видели, что АТР и ADP являются модуляторами важных регуляторных ферментов, участвующих в гликолизе, цикле лимонной кислоты и окислительном фосфорилировании АТР действует как отрицательный модулятор, а ADP обычно стимулирует катаболизм углеводов. Вследствие этого любое изменение отношения действующих масс [ATP]/[ADP] [PJ, в норме весьма высокого, может соответствующим образом изменять также и активность некоторых регуляторных ферментов центральных катаболических путей. Имеются, однако, среди этих ферментов и такие, для которых положительным модулятором служит АМР. Чтобы оценить участие в метаболической регуляции наряду с АТР и ADP также и АМР, Даниэль Аткинсон ввел понятие энергетического заряда и использовал его в качестве одной из характеристик энергетического состояния клеток. Энергетический заряд есть мера заполнения всей аденинну-клеотидной системы (т.е. суммы АТР, ADP и АМР) высокоэнергетическими фосфатными группами  [c.541]

    Для того чтобы два тесно сопряженных между собой процесса—перенос электронов и гликолиз, каждый из которых нуждается в АДФ,— могли функционировать непрерывно, количество АДФ в системе должно быть достаточно большим. Если отношение АДФ/АТФ в клетке понизится, то замедление реакции должно, по-видимому, начаться сначала в той системе, которая обладает меньшим сродством к АДФ. Поскольку ферменты системы гликолиза имеют более высокую константу Михаэлиса для АДФ, чем ферменты дыхательной цепи, то можно предсказать, что в аэробных условиях, когда АДФ легко превращается в АТФ в ходе реакции окислительного фосфорилирования, процесс гликолиза начнет замедляться и затем совсем прекратится. Подавление брожения воздухом фактически впервые обнаружил Пастер. Однако высказывались и другие предположения относительно механизма этого явления, получившего название эффекта Пастера. Так, например, ортофосфат требуется для окислительного фосфорилирования и в то же время служит субстратом для гликолити чес кого фермента глицеральдегид-З-фосфатдегидрогена-зы. Следовательно, убыль фосфата в результате окислительного фосфорилирования может привести к торможению гликолиза. Другая интерпретация эффекта Пастера вытекает из попытки ответить на вопрос почем,у злокачественные ткани образуют в аэробных условиях в значительных количествах лактат, в то время как нормальные ткани этим свойством не обладают В этом случае происходит нарушение того механизма регуляции, с которым мы уже познакомились. Этот эффект можно объяснить по аналогии [c.55]


Смотреть страницы где упоминается термин Гликолиз регуляция: [c.136]    [c.219]    [c.50]    [c.550]    [c.554]    [c.251]    [c.413]    [c.136]    [c.453]    [c.467]    [c.468]    [c.472]    [c.472]    [c.603]    [c.606]    [c.607]    [c.741]    [c.56]   
Биологическая химия Изд.3 (1998) -- [ c.342 , c.343 , c.358 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.493 , c.494 , c.542 , c.606 , c.611 ]

Метаболические пути (1973) -- [ c.53 ]

Биохимия растений (1968) -- [ c.117 ]

Биохимия человека Т.2 (1993) -- [ c.214 , c.219 ]

Биохимия человека Том 2 (1993) -- [ c.214 , c.219 ]

Физиология растений (1989) -- [ c.168 , c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Гликолиз

Гликолиз ингибиторы и регуляция

Принципы регуляции гликолиза и глюконеогенеза в печени

Регуляция

Регуляция гликолиза и гликогенолиза

Регуляция гликолиза и глюконеогенеза в печени

Фосфофруктокиназа ключевой фермент в регуляции гликолиза



© 2025 chem21.info Реклама на сайте