Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты определение последовательност

    Каждому белку присущи строго определенная последовательность аминокислот в полипептидной цепи и определенная пространственная структура. В связи с этим у белков различают четыре уровня структурной организации первичная структура соответствует последовательности остатков аминокислот в полипептидной цепи вторичная структура — расположению полипептидной цепи в пространстве при закручивании ее в спираль за счет водородных связей между группами СО и ЫН разных участков цепи третичная структура определяет, каким образом сворачиваются полипептидные цепи в клубки (субъединицы) путем образования связей, ионов с участием свободных амино- и карбоксигрупп на взаимо- [c.310]


    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Пары оснований, связанные водородными связями Молекула ДНК обеспечивает хранение наследственной информации, закодированной определенной последовательностью оснований, присоединенных к углевод-фосфатной цепи. Установлено, что молекула ДНК является матрицей для синтеза информационной РНК , которая далее контролирует синтез белков на определенных структурах клетки, называемых рибосомы . В конечном счете каждая группа из трех оснований молекулы ДНК ответственна за совершение определенной операции при синтезе белка. Все 64 возможные комбинации трех оснований дают команды или для объединения отдельных аминокислот в белковую последовательность, или для окончания приращения цепи (некоторые комбинации кодируют одну и ту же команду). [c.321]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]


    Изучение структурной самоорганизации позволило сформулировать фундаментальное положение о том, что конформация белковой молекулы отвечает термодинамически равновесному состоянию и, как таковое, не зависит от конкретных внешних условий свертывания белковой цепи (in vivo, in vitro или с помощью шаперонов) и от ее предыстории, т.е. способа получения (биосинтез или химический синтез). Конечная пространственная структура определяется исключительно составом и порядком расположения аминокислот в последовательности. Было доказано, что все необходимые сведения о физиологически активной форме белка заключены в его химическом строении. Трансляция линейной информации в трехмерную структуру возможна, однако только при вполне определенных физиологических условиях (температура, давление, pH, ионная сила, присутствие простетических групп, ионов металла). При их соблюдении сборка осуществляется спонтанно в том смысле, что принятие белком своей равновесной нативной конформации не требует специального [c.81]

    В результате гидролиза белков образуются смеси а-ами-нокислот. В состав белков входят до 25 различных аминокислот. Определенная последовательность аминокислот, реализующаяся в линейной структуре макромолекулы, как это было показано на схеме, определяет так называемую [c.170]

    Итак, белки это длинная полипеп гидная цепь, построенная из аминокислот (точнее, из их остатков) посредством пептидной связи в определенной последовательности. Впервые это установил Нобелевский лауреат Эмиль Фишер в начале XX века. [c.268]

    Последовательность оснований в макромолекуле чрезвычайно важна, поскольку в ней закодированы наследственные признаки и информация для синтеза белков со строго определенной структурой, т. е. белков с определенной последовательностью аминокислот. [c.218]

    К. используют для определения последовательности С-концевых аминокислот в белках и пептидах. [c.322]

    Для определения последовательности аминокислот в дипептиде можно воспользоваться одним из нижеописанных способов. [c.480]

    Некоторые из описанных в данном обзоре методов селективного расщепления играют важную роль в определении последовательности расположения аминокислот в пептидах и белках. В настоящее время только наиболее перспективные из этих методов находят практическое применение в той мере, в какой они пригодны для установления связи между строением и биологической активностью белковых соединений. Однако для исследования более сложных белков могут потребоваться другие методы. Можно надеяться, что проблемы, которые возникнут в связи с изучением этих белков, будут стимулировать изыскание новых методов селективного рас- [c.248]

    К настоящему моменту (середина 1977 г.) определены структуры более 100 белков, больщинство которых являются ферментами. Точность этих измерений не настолько велика, как в случае малых органических молекул, так как все кристаллы белков обладают определенной долей неупорядоченности, вследствие чего раз-рещение ограничивается 0,2 нм. Это означает, что боковые радикалы с одинаковой геометрией различить не удается (например, валин от треонина или амидную группу от карбоксильной в остатках глутамата и аспартата). По этим данным, таким образом, нельзя определять полные аминокислотные последовательности. Идентификация таких спорных аминокислот должна быть поэтому основана на обычных методах определения последовательности (см. часть 23). Эти ограничения, однако, являются второстепенными для метода, дающего информацию о структуре и не имеющего себе равных по степени точности и объему [47]. [c.485]

    Возможность применения рентгеноструктурного анализа для определения последовательности аминокислот в белковой молекуле была рассмотрена ранее. Следует отметить совершенно новый подход к решению этой важной проблемы - определение последовательности аминокислот в белковой молекуле с использованием данных о комплементарной нуклеотидной последовательности ДНК. Этому способствуют как методы быстрого секвенирования ДНК, так и техника изолирования и доступности самого гена .  [c.56]

    Дннитрофторбензол реагент Сенгера) — алкилирующий реагент, который нашел широкое применение в аналитической практике (при определении последовательности аминокислот, образующих белковый полимер). [c.49]

    Синтез полипептидоч. Для того чтобы связать аминокислоты в строго определенной последовательности, нужны защитные группы, которые предотвратили бы нежелательные конденсации между карбо-ксильными и амииными группами. Необходимо, чтобы такие группировки могли быть впоследствии избирательно отщеплены без затрагивания пептидных связей. [c.385]

    Полипептидная цепь — это первичная структура белковой молекулы с определенной последовательностью расположения рис, во. Схема а-спиралн микрострук-аминокислот. туры белка [c.199]

    Значительно более сложным является определение последовательности аминокислот в пептидных цепях белка. С этой целью прежде всего определяют Ы- и С-концы по-лппептидных цепей при этом решаются две задачи идентифицируются концевые аминокислоты и определяется число пептидных цепей, входящих в состав макромолекул белка. [c.376]


    Затем с аминогруппы аминокислоты снимают трет-бутоксикарбониль-ную защиту и проводят ступенчатый синтез пептида заданной длины и определенной последовательности аминокислот, включая все перечисленные ранее стадии синтеза и удаляя после каждой реакции побочные продукты синтеза промывкой носителя. [c.381]

    N-Koнцe вoй лизин дает а,е- бис-динитрофенильиое производное лизин, расположенный в середине цепи или на С-конце, дает е-моноди-нитрофенильное производное. Фенольная группа тирозина и имино-группа гистидина также реагируют с динитрофторбензолом, но образующиеся производные расщепляются в условиях кислотного гидролиза пептидной связи. Для определения последовательности аминокислот белок подвергают частичному гидролизу и определяют строение образовавшихся ди- и трипептидов анализом концевых групп. Если в гидролизате охарактеризованы все возможные дипептиды, то последовательность аминокислот в белке может быть однозначно определена без дальнейшего анализа концевых групп. [c.690]

    Большое число работ, опубликованных в 1980—1983 гг., посвящено отработке обратнофазовой гидрофобной хроматографии фенил-тиогидантоиновых производных аминокислот (ФТГ-АК). В виде таких производных аминокислоты одна за друго отщепляются при автоматическом определении последовательности аминокислот в полипептиде по методу Эдмана. Эта операция получила название секвенирования белков, а соответствующие автоматические приборы [c.196]

    В последние годы было твердо установлено, что процессы включения аминокислот в белок тесно связаны с нзитичием РНК В этих системах, и, следовательно, РНК участвует в процессе биосинтеза белка. Каким же образом 20 аминокислот, находящихся в клетке, соединяются пептидными связями в специфическую и генетически определенную последовательность  [c.263]

    Исследователи, занимающиеся изучением этого важнейшего процесса, считают, что -высокополимерная, линейная микросомная РНК является матрицей. На этой матрице аминокислоты располагаются в определенной Последовательности, которая, по-ви димому, определяется чередованием оснований в полимерной РНК, и затем из активиро ванных аминоки слот образуются пептиды. Во зможно, что амино кислоты не переносятся на высоксполимерную РНК, а остаются на растворимой, низкомолекулярной РНК, которая реагирует с линейным уча-стком высокополимерной микросомной РНК, образуя водородные связи за счет оснований. [c.265]

    Напомним, что последовательности аминокислот в цепях белков всегда точно заданы генетически. Знание аминокислотной последовательности очень важно для понимания поведения специфических белков. По этой причине в последнее время усилия многих биохимиков направлены на определение последовательностей сотен бел/сов. Одним из крупных белков, для которых эта задача решена, является у-имму-ноглобулин человека, содержащий 446 остатков в одной цепи и 214 — в другой. Полная аминокислотная последовательность другого белка приведена на рис. 2-1. На рис. 2-2 даны последовательности некоторых небольших пептидных гормонов и антибиотиков. [c.85]

    Расщепление пептидной цепи, необходимое для определения последовательности аминокислот, осуществляют с помощью частичного химического или ферментативного гидролиза. При ферментативном расщеплении чаще всего используют протеазы трипсин, химотрипсин, пепсин, папаин, субтилизин, зластазу и термолизин [84]. [c.365]

    Этот фермент может быть выделен из экстрактов поджелудочной железы в чистом виде [128], но до использования для определения последовательности аминокислот его рекомендуется инкубировать с диизопропилфторфосфатом, чтабы инактивировать возможные примеси химотрипсина, трипсина и субтилизина [122, 267, 300]. Основные свойства и специфич-кость действия карбоксипептидазы подробно рассмотрены в ряде работ [228 293]. В Других работах [114, 136, 226, 320] приводятся данные об использовании фермента для определения последовательности аминокислот в белках. Карбоксн-Пептйдаза специфична в отношении С-концевых аминокислот [c.232]

    Наиболее успешное применение этот метод нашел для определения последовательности расположения аминокислот гепта пептидного участка Н.Сер.Тир.Сер.Мет.Глу.Гис.Фе— в кортикотропине овцы [141], декапептидного участка Н. Асп.Глу.Гли.Про.Тир.Лиз.Мет.Глу.Гис.Фе— в меланофорости-мулирующем гормоне [120, 142] и пентапептидного участка [c.244]

    Аминолиз Ы-карбоксиаягидридов аминокислот эфирами аминокислот — первая стадия контролируемого синтеза пептидов с определенной последовательностью аминокислот—носит название реакции БЕИЛИ  [c.36]

    Один из видов РНК, так называемая РНК-посредник, или информащон-ная РНК переносит информацию на рибосому, где собственно и происходит синтез белка. В рибосому к информационной РНК поступает набор транспортных РНК, каждая из которых связана с определенной аминокислотой (о последовательности оснований в одной из этих 20 транспортных РНК, а именно об РНК, переносящей аланин, и шла речь на стр. 1062). Порядок поступления молекул транспортной РНК в рибосому, а следовательно, и последовательность включения аминокислотных остатков в белковую цепь зависит от последовательности оснований в цепи информационной РНК- Так, ГУА является кодовым словом для аспарагиновой кислоты, УУУ — для фенилаланина, УГУ — для валина. Существует 64 трехбуквенных слова (64 кодона) и лишь двадцать аминокислот, и поэтому одной и той же аминокислоте могут соответствовать несколько кодонов для аспарагина — АЦА и АУА, для глутаминовой кислоты — ГАА и АГУ. [c.1065]

    Последовательность первой мРНК млекопитающих дала возможность осуществить прямое сравнение структуры генетического кода с его практическим использованием. Это позволило обнаружить неожиданное неравноправие в выборе между вырожденными кодонами для одной и той же аминокислоты. Анализы последовательностей гетерогенных РНК ядер клеток позволяют сделать первые щаги в понимании связи таких гетерогенных яРНК с мРНК [35]. Наконец, героическое определение полной последовательности остатков РНК вируса MS2 перекинуло мостик между структурной химией и жизнью как таковой [36]. [c.196]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    При планировании синтеза пептидов значительного размера нужно уделить особое внимание как разработке общего или стратегического плана, так и тактике, с помощью которой этот план может быть эффективно выполнен [110]. Основной стратегический замысел состоит в способе, которым может быть достигнуто построение определенной последовательности остатков аминокислот, т. е. либо ступенчатым способом по одному остатку за одну ступень, начиная с концевой амино- или карбоксигруппы, либо путем объединения нескольких частей с определенной последовательностью (конденсация фрагментов), проводя синтез либо в растворе, либо твердофазным способом и т. д. Тактические соображения включают выбор подходящего сочетания защитных групп для концевых амино- и карбоксильных групп для различных боковых радикалов аминокислот. Некоторые из этих защитных групп постоянны , т. е. сохраняются до конца синтеза, другие — временны , т. е. подлежат отщеплению на промежуточных стадиях синтеза, что дает возможность создания определенного типа пептидной связи или это производится для того, чтобы нужным образом изменить растворимость и т. д. Условия для снятия защитных групп должны быть выбраны с учетом аминокислотного состава пептида. Другую часть тактики составляет выбор методики создат ния пептидной связи, выбор растворителя, особенно в связи с опас ностью рацемизации. [c.408]

    Метод масс-спектрометрии позволяет решать весьма сложные структурные задачи органической химии, например, такие, как определение последовательности расположения аминокислот в полипептидах, установление строения производных моносахаридов, дисахаридов и олигосахаров. В масс-спектрах производных углеводородов, содержащих атомы Вг (79 и 81), хлора (35 и 37), серы (32 и 34), следует учитывать наличие изотопноразличимых положительно заряженных фрагментов. Частицам, имеющим идентичное строение, но содержащим изотопные атомы, соответствуют близлежащие пики определенной интенсивности. Во многих случаях соотношения пиков изотопов того или иного атома в молекуле помогают легче решить вопрос о ее строении. Представления о структуре получают, анализируя пути фрагментации, т. е. изучая число, интенсивность пиков и природу их возникновения. В табл. 4.1 приведены данные о типичных осколках различных классов соединений и их массовых числах. [c.104]

    Ферментативные методы гидролиза основаны на избирательности действия иротеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин-аргинина и лизина, хпмотрипсин-триптофана, тирозина и фенилаланина. Ряд других ферментов, например папаин, субтилизин, проназа и другие бактериальные протеиназы, также используется для неполного гидролиза белков. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах. [c.56]

    Получены экспериментальные доказательства наличия в активном центре химотрипсина двух остатков гистидина и остатка серина, схематически представленных в трехмерной структурной модели предшественника этого фермента (рис. 4.3). Выявление химической природы и вероятной топографии групп активного центра—проблема первостепенной важности. Она сводится к определению природы аминокислот, их последовательности и взаиморасположения в активном центре. Для идентификации так называемых существенных аминокислотных остатков используют специфические ингибиторы ферментов (часто это субстратподобные вещества или аналоги коферментов), методы мягкого (ограниченного) гидролиза в сочетании с химической модификацией, включающей избирательное окисление, связывание, замещение остатков аминокислот и др. [c.123]

    Было показано, что в нуклеотидной последовательности мРНК имеются кодовые слова для каждой аминокислоты —генетический код. Вероятнее всего, он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК. Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 г. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только [c.520]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]


Смотреть страницы где упоминается термин Аминокислоты определение последовательност: [c.54]    [c.147]    [c.693]    [c.291]    [c.244]    [c.261]    [c.517]    [c.370]    [c.249]    [c.181]    [c.223]    [c.257]    [c.73]   
Современная общая химия Том 3 (1975) -- [ c.3 , c.374 , c.375 ]

Современная общая химия (1975) -- [ c.3 , c.374 , c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты последовательность, определение



© 2025 chem21.info Реклама на сайте