Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды Пептидные цепи, инсулина

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]


    Определение аминокислотной последовательности — задача очень трудоемкая. Однако ее можно было бы значительно облегчить, если бы удалось выработать приемы для фрагментации длинных пептидных цепей на относительно небольшие пептиды, содержащие от 10 до 15 аминокислотных остатков, и на другой ряд более длинных пептидов, с тем чтобы можно было установить места перекрывания небольших пептидов. Такая идеальная возможность редко встречается. Практически проблема решалась несколькими путями. История изучения инсулина, рибонуклеазы и гемоглобина отражает три различных подхода. В первых исследованиях, проведенных на инсулине, изучали частичные кислотные гидролизаты динитрофепилированных пептидов (см. гл. 6), а ферменты были использованы на второй стадии работы для получения более крупных пептидов. Быстрое установление структуры рибонуклеазы оказалось возможным благодаря усовершенствованию анализа аминокислот. Аминокислотный состав пептидов, полученных [c.113]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]


    Обсудим последовательные стадии определения первичной структуры небольшого пептида для белка эта процедура аналогична, но более громоздка. Сначала необходимо выяснить, какие аминокислоты находятся на концах цепи. Обратите внимание, что на рис. 40.1 одна концевая аминокислота содержит свободную а-аминогруппу, а другая концевая аминокислота — свободную а-карбоксильную группу. Эти аминокислотные остатки называют соответственно М-концевым и С-концевым. В соответствии с методикой, разработанной Сенджером в его работе с инсулином, сначала используется 1-фтор-2,4-динитробензол, который образует стабильное динитрофенильное производное с Ы-концевым остатком. После кислотного гидролиза модифицированная аминокислота отделяется и идентифицируется. Определение С-концевого остатка можно провести с помощью осторожной обработки ферментом карбоксипептидазой, которая специфически катализирует гидролиз С-концевой пептидной связи, отщепляя от полипептидной цепи единственную аминокислоту. Существуют также и другие методы определения Н- и С-конце-вых аминокислотных остатков, но два описанных являются наиболее распространенными. [c.374]

    НПр В природе пептиды встречаются в виде линейных олигопептидов (например, глутатион), циклопептидов (например, окситоцин) или в белках (состоят из нескольких пептидных цепей, как, например, инсулин). [c.349]

    Внутримолекулярные дисульфидные связи имеются, например, в окситоцине, вазо-прессиие, в А-цепи инсулина и в рибоиуклеазе. Межмолекулярные дисульфидные связи соединяют между собой цепи пептидов, причем ковалентно связанными могут быть как идентичные цепи, как в окисленной форме глутатиоиа, так и различные цепи, как в инсулине. Дисульфидные связи имеют большое значение для образования и стабилизации определенных пептидных и белковых структур. [c.87]

    Последовательность аминокислот в пептидных цепях белков, например инсулина, производит впечатление случайного и лишенного систематичности набора однако она может оказывать влияние на свойства белков несколькими способами. Так, кислотно-основные свойства белков и их изоэлектрические точки определяются числом и расположением кислых и основных аминокислот. Пространственное влияние замещающих групп определяет стабильность и точки изгиба пептидных спиралей. Последовательность аминокислот также может оказывать влияние на степень межмолекулярных взаимодействий и растворимость белков. Пептиды, состоящие из аминокислот одного типа, часто оказываются чрезвычайно мало растворимыми вследствие сильных внутримолекулярных взаимодействий. Если однородность цепи нарушается в результате включения в нее других аминокис- [c.388]

    Можем ли мы в настоящее время искусственно синтезировать белки На этот вопрос надо ответить утвердительно. Во-первых, созданы искусственные системы биосинтеза белка, содержащие необходимые РНК, ферменты, -аминокислоты, ионы магния и т. д. Эти системы позволяют вне живого организма получать белки. Во-вторых, мы близко подошли к синтезу простых белков — полипептидов — чисто химическим путем. Синтез ведут на твердой полимерной основе, к которой прикреплена первая аминокислота, и наращивание пептидной цепи ведется без выделения промежуточных пептидов. Таким путем, например получают белок инсулин, применяемый для лечения диабета. [c.181]

    Взаимодействия ионов металлов с белками, естественно, отличаются от взаимодействий ионов металлов с аминокислотами и пептидами, поскольку в белках группы а-ННг и а-СООН длинных полипептидных цепей разделены ковалентными связями ряда расположенных между ними остатков. Эти взаимодействия отличаются также из-за влияния конформационного состояния пептидной цепи, в результате которого потенциальное место присоединения может блокироваться, а удаленная боковая цепь может оказаться в подходящем месте для образования хелатного кольца. Примерами подходящего расположения боковой цепи лиганда, делающего возможным образование прочного хелата со специфическим ионом металла, могут служить металлопротеины и металлоферменты, в которых сильное взаимодействие между металлом и белком играет решающую и специфическую биологическую роль. Металлопротеины и металлоферменты будут рассмотрены в последующих главах. В этой главе в основном будет обсуждено поведение белков in vitro в присутствии ионов металлов, с которыми они ие обязательно реагируют в природе. Биологическая функция двойных и других описанных здесь комплексов металлов с белками не известна, за исключением комплексов ио а меди (И) с альбумином и ионов цинка с инсулином, для которых было постулировано участие в транспорте и хранении соответственно. [c.274]

    Белково-пептидные гормоны синтезируются из аминокислот и могут быть пептидами (от 2 до 50 аминокислот) либо полипептидами — белками со сложной пространственной структурой, как, например, гормон поджелудочной железы — инсулин. Состоит инсулин из двух пептидных цепей с разным количеством аминокислот  [c.132]


    Из табл. 26 следует, что действие фермента наиболее эффективно в отношении субстратов, содержащих более крупные боковые цепи. Ароматические остатки меиее чувствительны относительно медленно гидролизуются амиды аминокислот, имеющих полярные боковые группы. Скорости гидролиза пептидов зависят также от природы аминокислот, примыкающих к N-концевому остатку. В ряде случаев оказалось возможным частично выяснить N-концевую последовательность при подМощи лейцинаминонептидазы. Окисленные А и В-цепи инсулина легко гидролизуются ферментом до свободных аминокислот. Путем кинетического исследования удалось установить последовательность первых шести N-коицевых аминокислот В-цепи инсулина. При помощи лейцинаминопептидазы были получены важные данные об N-концевой последовательности ряда природных пептидов и пептидных фрагментов, полученных из белков. Некоторые белки, например рибонуклеаза, лизоцим, Zn-инсулин и сывороточный альбумин, устойчивы к действию фермента, но легко гидролизуются после окисления надмуравьиной кислотой или после удаления Zn (в случае инсулина). Полное расщепление пептида или белка до аминокислот указывает на L-конфигурацию всех входящих в его состав аминокислот. f  [c.183]

    Для ступенчатого расщепления ФТК-производных высших пептидов и белков, по-видимому, лучше применять безводные кислотные реагенты, так как при этом снижается вероятность разрыва связей внутри пептидной цепи при многократном последовательном отщеплении концевых остатков. Ступенчатое расщепление ФТК-инсулина в водной среде в присутствии хлоргидрата гуанидина, который удерживает белок в растворе, действием 1 н. НС1 при 36° [112] или 0,1 н. НС1 при 75° [60] на начальных стадиях происходит нормально. Однако при использовании разбавленных кислот помимо ожидаемых ФТГ-прокзводных на последующих стадиях отщепления образуются все возрастающие количества других фенилтиогидан-тоннов, что свидетельствует о расщеплении других пептидных связей. [c.243]

    В дальнейших исследованиях Сенгер разработал, а впоследствии довел до полного совершенства, метод, позволивший определять последовательность аминокислотных остатков в полипетидных цепях. При этом он исходил из следующих, сформулированных им на симпозиуме по аминокислотам и белкам в Колд Спринг Харборе в 1949 г. положений Методом динитрофенилирования можно определить природу концевых групп путем идентификации ДНФ-аминокислот (динитрофенил-амино-кислот.—Л. Ш.), полученных при гидролизе ДНФ-белка. Однако, если гидролизовать ДНФ-белок лишь частично, можно получить ДНФ-пептиды, исследование строения которых дает указания относительно природы аминокислот, расположенных в пептидных цепях вблизи концевых групп. ДНФ-пептиды довольно хорошо поддаются отделению от незамещенных пептидов и аминокислот путем экстракции органическим растворителем из подкисленного раствора и хроматографическим фракционированием на силикагеле. Смеси ДНФ-пептидов, полученные этим способом, гораздо менее сложны, чем продукты частичного гидролиза необработанного белка, так как отделяются только пептиды, содержащие М-концевые группы исходного белка. Для дальнейшего упрощения анализа последовательности аминокислот вместо инсулина были взяты очищенные фракции А и В, образующиеся при его окислении и содержащие только по одной концевой группе [37]. [c.133]

    Гормон инсулин имеет две пептидные цепи А (20 остатков) и В (30 остатков). Они получаются из одного белкового предшественника, препроинсулина, в котором 23 из его 108 аминокислот предшествуют пептиду и 35 соединяют -пептид с Л-пепти-дом. Молекула мРНК для этого белка имеет, таким образом, по крайней мере 327 нуклеотидов. [c.213]

    Представления о возможностях современной синтетической пептидной химии могут дать синтезы биологически активных природных пептидов и их структурных аналогов и фрагментов. Это прежде всего синтезы окситоцина и его аналогов, вазопрессина и его аналогов, гипертензинов, бра-дикинина, глюкагона, фрагментов цепи мелапофорстимулирующих гормонов и адренокортикотропного гормона, фрагментов цепей инсулина и, наконец, полный синтез первого природного белка — инсулина (см. раздел Пептиды и белки известной структуры ). [c.126]

    В настоящее время в твердофазном синтезе успешно используют активированные эфиры различных аминокислот [14] (рис. 16). Как уже отмечалось выше, для введения в пептидную цепь остатков грег-бутил-оксикарбонильных производных аспарагина и глутамина обычно используют их п-нитрофениловые эфиры это позволяет избежать побочной реакции дегидратации амида до нитрила, вызываемой карбодиимидом. Нитрофениловые эфиры аминокислот также ограниченно применялись для синтеза ряда пептидов [15], включая А-цепь инсулина [39]. Реакции пептидообразования с применением этих эфиров обычно протекают медленнее, чем при использовании карбодиимида. В лаборатории Мэррифилда были получены удовлетворительные результаты при проведении реакций [c.64]

    Разработанный в 1963 году Р Меррифилдом (Нобелевская премия 1984 г) метод твердофазного синтеза пептидов (ТФСП) позволил повысить эффективность, ускорить процесс пептидного синтеза, автоматизировать метод и создать автоматические синтезаторы, позволяющие по заданной программе наращивать полипептидную цепь со скоростью 6 аминокислот в сутки Методом ТФСП бьши синтезированы инсулин (П Катсоянис, 1964 г, Я Кунг, X Уан, 1963-1965 г), фермент рибонуклеаза (124 аминокислоты, Р Меррифилд, Б Гутте, 1969-1971 г), jo-липотропин (91 аминокислота, Ч Ли, Д Ямаширо, 1978 г) и др [c.878]

    У всех этих гормонов последовательности А- и В-цепей в молекуле предшественника имеют на карбоксильных и аминоконцах высокогомологичные участки, соединяющиеся между собой связующим пептидом. В пептидных предшественниках инсулина и релаксина по обе стороны от связующего пептида расположены по две основные аминокислоты, соединяющие его с А- и В-цепями. После возникновения [c.252]

    В ряде случаев возвращение к физиологическим условиям позволяет полипептиду снова вернуться к нативной конформации, особенно если она стабилизирована внутрицеп-ными 5—8-связями. Однако такая ренатурация возможна только для одноцепочечных пептидов. Например, молекула инсулина, состоящая из двух пептидных цепей, связанных 8— -мостиками, после разрушения этих мостиков и денатурации не может вернуться к нативной конформации. Это определяется особенностями синтеза инсулина. Нативная конформация инсулина возникает в результате гидролиза проинсулина. Как показано на рис. 5, проинсулин синтезируется как одна пептидная цепь, содержащая на концах два участка А- и В-цепи будущего инсулина с шестью свободными цистеиновыми группами в их составе. Средний участок проинсулина (С см. рис. 5) принимает такую конформацию, при которой устанавливается определенная система 8—8-связей между концевыми участками цепи. После выщепления среднего участка возникает активная двухцепочечная молекула инсулина. Именно по причине пространственной предопределенности этой структуры за счет среднего участка проинсулина спонтанная ренатурация инсулина невозможна. Иными словами, удаление части пептидной цепи равнозначно потере молекулярной информации для оставшихся частей инсулина. [c.54]

    Доказательства существования водородных связей в белках могут быть получены при изучении скорости изотопного обмена имидного водорода с водой, содержащей дейтерий или тритий. Этот прием был использован в лабораториях Линдерштрём-Ланга и Бреслера. Известно, что в низкомолекулярных пептидах этот атом водорода обменивается с водой крайне быстро. В высокомолекулярных полипептидах с большим числом водородных связей обмен имидного водорода сильно замедлен. Например, у по-лиаланина с 28 пептидными связями только 5—6 имидных водо-родов обмениваются быстро. Это говорит о том, что почти все пептидные группы соединены водородными связями, а сама цепь свернута в упорядоченную спираль. У инсулина из 49 имидных водородов 30 обмениваются медленно, т. е. степень спирализации составляет примерно 60%. Другим подтверждением существования водородных связей в белках является их деструкция и денатурация под влиянием агентов, обладающих значительной способностью к образованию водородных связей с амидной группой (концентрированные растворы мочевины, гуанидина, трифтор-уксусная и муравьиная кислоты и др.). [c.91]

    Современные методики, применяемые в синтезе по способу Мэррифилда, позволяют исследователям синтезировать очень многие пептиды, содержащие все природные аминокислоты. Самые длинноцепочечные пептиды, полученные до настоящего времени этим методом, — инсулин [62], две цепи которого содержат 21 и 30 аминокислотных остатков соответственно, и ферредоксин [6], насчитывающий 55 остатков . Твердофазные синтезы проводят в самых разных масштабах от 10 мг полимера (2 мкмоля пептида) [121] до 40 г декапептидил-полимера в одном опыте [56]. Скорость твердофазного синтеза, составляющую в случае ручного варианта работы два или три аминокислотных остатка в день, можно увеличить до шести аминокислот в день, если использовать автоматический прибор [81, 82]. Дальнейшее развитие этого метода, несомненно, обеспечит еще более значительный прогресс в пептидном синтезе. [c.22]

    Не следует думать, что все белки, образовавшиеся в результате рибосомального синтеза, обладают полностью завершенной структурой. Во многих случаях они синтезируются в виде предшественников и лишь после протеолитического отщепления пептидного фрагмента приобретают законченную форму. Примерами такого рода посттрансляционной модификации белков может служить отщепление сигнальных пептидов по завершении переноса белков через биологические мембраны (см. рис. 101), фрагмен-тированне белковых предшественников при образовании из них функционально активных белков, например трипсина из трипсиногена, инсулина из проинсулина, или биологически активных пептидов, например гормонов и рилизинг-факторов. Аналогичный характер носит посттрансляционная модификация белков, сводящаяся к протеолитическому отщеплению N-концевого формилметионина или метионина, с которых, как показано выше, начинается сборка полипептидных цепей в процессе рибосомального синтеза белков. [c.300]


Смотреть страницы где упоминается термин Пептиды Пептидные цепи, инсулина: [c.104]    [c.290]    [c.797]    [c.27]    [c.25]    [c.43]    [c.317]    [c.488]    [c.162]    [c.256]    [c.55]    [c.253]    [c.252]    [c.253]    [c.706]    [c.252]    [c.252]   
Успехи органической химии Том 1 (1963) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулинома

цепи инсулина

цепи инсулина инсулина



© 2025 chem21.info Реклама на сайте