Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин кукурузе

    Определения аминокислот белков показали, что отдельные белки резко различаются по составу аминокислот. В некоторых белках отдельные аминокислоты могут отсутствовать или находиться в ничтожном количестве, а других может быть очень много. Например, зеин семян кукурузы не содержит лизина и триптофана, в то же время в нем много глутаминовой кислоты, лейцина, пролина и аланина. В глиадине пшеницы количество глутаминовой кислоты и амидов достигает почти половины общего содержания аминокислот в белке, в белках клубней картофеля много лизина, а в белках листьев ячменя очень мало цистина и т. д. [c.218]


    У зерна пшеницы белок в эндосперме подразделяют на пять групп [63] альбумины, глобулины, глиадины, глютенины и остаточный белок. Клейковина, важная для процесса хлебопечения, представляет собой обычно смесь глютенинов, глиадинов и остаточного белка. При производстве спирта из зерна эта белковая фракция восстанавливается и в качестве побочного продукта поставляется на предприятия пищевой промышленности. Важные белки эндосперма кукурузы, зеины, родственны глиадинам пшеницы и гордеинам ячменя (табл. 1.1) [82]. Зеины представляют собой небольшие по размеру молекулы с высоким содержанием глютамина, лейцина, аланина и пролина, но с низким содержанием лизина. Некоторые зеины богаты также метионином. Основным резервным белком риса являются глютелины (около 80%), сходные по своим характеристикам с глютенинами пшеницы. В каждой зерновой культуре от растворимости накапливаемых белков зависит количество азотистых веществ в водном экстракте, доступных для метаболизма дрожжей. Хотя большинство зерновых культур, за исключением ячменя, для солодоращения не используются, в производстве спирта из зерна и большинства сортов пива для инициации процесса желатинизации крахмала кукуруза, рис и пшеница подвергаются ферментативной и последующей тепловой обработке. [c.22]

    Аминокислоты можно получить из природных материалов или приготовить путем химического синтеза. В первом случае обычно получают Ь-изомеры аминокислот аминокислоты, полученные методами химического синтеза (за исключением глицина, р-аланина и т. п.), представляют собой рацематы. Способы выделения аминокислот многообразны, и этому вопросу посвящена весьма обширная литература. Некоторые белки служат хорошим сырьем для получения определенных аминокислот клейковина (глютен) пшеницы служит основным сырьевым материалом для производства Ь-глутаминовой кислоты глютен кукурузы — хороший источник для выделения Ь-лейцина и Ь-тирозина Ь-ар-гинин можно получить из желатины и из крови. Продажные препараты Ь-аспарагина получают из побегов спаржи (ср. [14]). [c.91]

    По данным лаборатории фотосинтеза Украинской сельскохозяйственной академии, пыльца разных видов растений подсолнечника, укропа, кукурузы, конопли содержит различное количество сахаров (моно- и дисахаридов), каротиноидов, нуклеиновых кислот и аминокислот. В пыльце ветроопыляемых растеннй—-кукурузы и конопли — много моно- и дисахаридов (10—13 мг%) по сравнению с пыльцой укропа, а в пыльце на-секомоопыляемого растения подсолнечника отмечено большое количество моносахаридов (18,2 мг%) и очень мало дисахаридов (0,61 мг%). Пыльца кукурузы содержит очень мало каротиноидов (4,41 мг%) — почти в 30 раз меньше, чем пыльца подсолнечника и укропа (107—116 мг%). Содержание нуклеиновых кислот также разное в пыльце конопли 749 мг%, укропа— 320, кукурузы — 201,5, а ДНК — соответственно 173,3, 78,8, 77,6 мг%, и совсем их нет у подсолнечника. Пыльца этих растений различается и по аминокислотному составу. Тирозин и триптофан обнаружены лнщь в пыльце конопли, а в пыльце подсолнечника и укропа — аминокислоты из группы так называемых незаменимых (эссенциальных) аминокислот — треонин, валин, метионин, фенилаланин, лейцин. [c.481]


    Ограничение метаболизма порфиринов у высших растений путем развития пластид иллюстрируется исследованиями на мутантах ячменя альбина-7 и ксапта-23, которые имеют лишь частично развитые пластиды. У проростков этих двух мутантов образуется нормальное количество пигмента при снабжении их соответственно аспартатом или лейцином [28]. Эти наблюдения свидетельствуют также о взаимодействии между клеточными процессами, контролируемыми ядерными генами (например, метаболизмом лейцина), и развитием пластид с сопутствующим синтезом хлорофилла. Другим примером регуляции ядром питания пластид служит рецессивный признак кукурузы желтая полоса 1 (уз ). Гомозиготные по рецессивному гену ув растения, выращенные в присутствии некоторых форм железа или при пизких концентрациях фосфора, являются фе-нокопиями кукурузы дикого типа ([3]). Обычно не ясно, влияет ли хлороз, обусловленный недостатком минеральных элементов, непосредственно на образовапие какого-то фермента биосинтеза порфиринов или же он влияет на развитие пластид в целом. Аномалии пластид встречаются у растений при недостатке железа или магния [17, 89]. [c.460]

    В качестве примера можно указать на избыток лейцина, который уменьшает использование изолейцина в белках кукурузы. [c.569]

    Белки в питательном рационе вполне могут быть заменены аминокислотами. Оказалось также, что часть необходимых аминокислот животные могут вырабатывать сами из других азотосодержащих органических соединений. Другую часть аминокислот организм синтезировать не в состоянии, они должны поступать в готовом виде, в составе белков пищи. Такие аминокислоты получили название незаменимых. К ним относятся лизин, триптофан, фенилаланин, валин, метионин, треонин, лейцин, изолейцин, гистидин, аргинин. Белковая пища должна покрывать не только общую потребность в аминокислотах, но и содержать необходимые количества незаменимых аминокислот. При недостаточном поступлении этих аминокислот нормальное существование организма нарушается. Так, например, белок кукурузы зеин не содержит лизина и почти не содержит триптофана. В опытах с животными, которые получали с пищей один только этот белок, наблюдалось похудание, несмотря на обильное кормление. Отсутствие в пище триптофана может быть причиной тяжелого заболевания глаз — катаракты. [c.401]

    ЗЕИН — белок группы прола.нинов, содержится в зернах кукурузы (3—7%). 3., нерастворим в воде и водных солевых р-рах, хорошо растворим в спирте. При электрофорезе и ультрацентрифу1ированип 3. разделяется иа несколько фракций, И.юэлектричс-ская точка 3, находится при pH 6,2, коэфф. седиментации 1,9 S (единиц Сведберга), мол. в. ок. 50 000. Ориентировочный химич. состав гидролизатов 3, (в %) общий азот 16,2 аммиак 3,0 аланин 11,5 серии 7,8 треонин 3,0 валин 3,0 лейцин 24,0 изо- [c.52]

    Взаимодействием 2-метил-4-хлорфенокоиацетилхлоркда с различными аминокислотами в присутствии оснований синтезирован большой, ряд 2-метил-4 хлорфеноксиа>цетилам,инокислот и изучена их физиологическая активность на бобах, кукурузе, огурцах, подсолнечнике и ячмене [103, 104]. Все синтезированные соединения за исключением производных Д-лейцина и О-фе-нилаланина оказались активными, но по силе действия уступали 2М-4Х [104]. [c.332]


Смотреть страницы где упоминается термин Лейцин кукурузе: [c.31]    [c.191]    [c.65]    [c.31]    [c.35]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.299 , c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Кукуруза

Кукуруза содержание лейцина, изолейцина и валин

Лейцин



© 2024 chem21.info Реклама на сайте