Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагин формула

    Установлен ряд аминокислот по их комплексообразующей способности цистеин > гистидин > аспарагин > метионин > глицин, аланин, валин, фенилаланин. Определен состав твердых соединений, выделенных из золотосодержащих растворов гистидина и фенилаланина золото в них находится в состоянии окисления (I), состав соединений отвечает формулам с соотношением золота к аминокислоте 1 1. Методом ИК-спектроскопии установлены связь металла с карбоксильной и аминогруппами в соединении золота с фенилаланином и связь металла с аминогруппой и азотом имидазольного кольца в соединении с гистидином. [c.154]


    Согласно данным Фишера, из правовращаюш,его (не природного) аспарагина (IV) (при гидролизе он превращается в левовращающую аспарагиновую кислоту III) в результате перегруппировки Гофмана была получена та же самая левовращающая диаминопропионовая кислота (II), что и из (+)-серина. В соответствии с этим конфигурации аспарагина и аспарагиновой кислоты изображаются следующими проекционными формулами  [c.246]

    Содержание аспарагина рассчитывают по формуле Ас=[с — (а + Ь) 9,42, [c.12]

    Пример расчета. В гидролизате определено 112,0 мг% азота, в исследуемом продукте 26,5 мг% азота N 13. Содержание азота в глютамине составляет 45,0 мг%. Подставляем полученные величины в формулу и определяем содержание- аспарагина в продукте  [c.12]

    Установлено, что важными составляющими белков являются двадцать три аминокислоты. Названия этих кислот приведены в табл. 14.1 там же указаны формулы характеристических групп К. Некоторые аминокислоты имеют дополнительную карбоксильную группу или дополнительную аминогруппу. Так, имеется двухосновная диаминокислота — цистин, очень близкая к простой аминокислоте цистеину. Четыре из указанных в таблице аминокислот содержат гетероциклические кольца (кольца, состоящие из атомов углерода и одного или нескольких атомов других элементов, в данном случае атомов азота). Две из приведенных аминокислот — аспарагин и глутамин — родственны двум другим — аспарагиновой и глутаминовой кислотам, от которых аспарагин и глутамин отличаются только тем, что имеют вместо дополнительной карбоксильной группы амидную группу [c.385]

    В природе встречается свыше 70 аминокислот, но только 20 из них играют важную роль в живых системах. Названия этих кислот (и их сокращения, которые также часто используются) вместе со структурными формулами приведены в табл. 25-1. Все аминокислоты, за исключением пролина и окси-пролина (см. табл. 25-1), имеют структуру К— И(NИ2) 02И различия между аминокислотами определяются природой радикала. В некоторых случаях отличия между радикалами незначительны так, а-аминокислоты глутамин и аспарагин являются моноамидами соответственно глутаминовой и аспарагиновой кислот. [c.382]

    За исключением триптофана и аминодикарбоновых кислот, названия аминокислот имеют окончания -ин, что подчеркивает их принадлежность к аминам. Аминоацильные остатки общей формулы NHj- HR- O- называют, добавляя к корню слова окончание -ил. Поскольку у аспарагиновой и глутаминовой кислот и их полуамидов одинаковые корневые слова, остатки глутамина и аспарагина называют обычно глутаминил и аспараги-нил , остатки же глутаминовой и аспарагиновой кислот получили названия глутамил и аспарагил . [c.11]


    При необходимости описать строение более длинных молекул можно также воспользоваться однобуквенньпл кодом, в котором каждой аминокислоте присвоена одна заглавная буква латинского алфавита аланин - А, аспарагин - N, аспарагиновая кислота О, аргинин - Я, валин - V, гистидин - Н, глицин - О, глутамин О, глутаминовая кислота - Е, изолейцин - I, лейцин - Ь, лизин - К, метионин - М, пролин - Р, серии - 8, тирозин - V, треонин Т, триптофан - фенилаланин - Р, цистеин " С. С использованием этого кода вместо громоздкой структурной формулы, написанной в начале страницы, можно записать УЯМ. [c.54]

    Какие структурные формулы имеют следующие аминокислоты и их производные а) а-аминомасляная, б) 7-аминомасля-ная, в) р-аминовалериановая, г) у-аминовалериановая, д) ос-амино-изовалериановая, е) р-аминоглутаровая, ж) у-аминокапроновая, з) р-окси-а-аминопропионовая, и) а-аминоадипиновая, к) а-амино-Р,7,б-триметилкапроновая,, л) а,6-диаминовалериановая, м) а-аминоизокапроновая (лейцин), н) моноамид а-аминоянтар-ной кислоты (аспарагин), о) этиловый эфир гликоколя, п) нитрил 7-аминомасляной кислоты, р) а,е-диаминокапроновая кислота (лизин). [c.221]

    Рассматривая структурные формулы оптически активных веществ, неизменно убеждались в том, что в молекуле таких веществ обязательно имеется асимметрический атом. В качестве примеров известных в то время оптически активных веществ можно назвать винную, молочную, яблочную, сахарную, фенил-гликолевую кислоты, аспарагин, лейцин, глюкозу, а .1иловый спирт. Этот список можно было бы продолжить. Были известны, однако, и несколько случаев, когда оптическая активность приписывалась веществу, не имеющему асимметрического атома. Так, стирол СбНаСН =СНг некоторое время считали оптически активным. Однако вскоре Вант-Гофф показал, что в действительности [c.33]

    Таким образом, аспарагин образуется в растениях из формальдегида и аммиака. В белке 72HJJ2N gS0 2 (формула Либеркюна) атомы углерода и азота находятся в отношении 4 1. Следовательно, то же самое отношение должно существовать в группах атомов, образующих при конденсации молекулу белка. Однако растения, питающиеся избытком аммиачных солей, накапливают в качестве азотистого резерва аспарагин, содержащий один лишний атом азота и не обладающий резко выраженной способностью конденсироваться. Чтобы отвести это возражение, Лев высказывает предположение, что из аммиака и формальдегида образуется сначала не аспарагин, а его гипотетический альдегид. Этот а.льдегид частично конденсируется в бело1л% частично соединяется с аммиаком, превращается путем окисления в аспарагин, который и накапливается в клетке в виде азотистого резерва. Соответственно, прежде чем участвовать в синтезе белка, аспарагин, существующий уже в растениях, должен превратиться путем восстановления в соответствующий альдегид. [c.200]

    Имеются, однако, факты, противоречащие этим формулам. Так, при действии на ликомаразмин (64) гипобромита и последующем гидролизе не удается обнаружить аспарагиновой кислоты, тогда как эта кислота может быть легко найдена, если аналогичному воздействию подвергается соединение (65). Это наблюдение противоречит формуле (66), так как указывает на наличие в молекуле ликомаразмина остатка аспарагина, а не аспарагиновой кислоты. Формула (66) не согласуется также и со способностью ликомаразмина отщеплять при действии гипоиодита СШз. Изложенным фактам не противоречит формула (67), согласно которой ликомаразмин построен из остатков аспарагина, глицина и гипотетической а-замещенно11 а-аминокислоты — а-окси-а-аланина . Однако наличие последней кислоты в молекуле ликомаразмина еще нельзя считать убедительно доказанным. Что касается циклической формулы ( 68), то она была отвергнута в результате синтетических исследований, выявивших ее несостоятельность 2 . Таким образом, вопрос о строении ликомаразмина следует пока считать в значительной мере открытым. [c.70]

    Расположение дисульфидных связей было установлено путем ферментативного гидролиза неокисленного инсулина. Особый интерес вызывает внутрицепочечная дисульфидная связь, образующая петлю в цепи А (остатки 6—11). Удалось выделить препарат цепи А с нетронутой внутри-цепочечной дисульфидной связью Было установлено, что различия, проявляемые инсулинами из поджелудочной железы разных пород животных, обусловлены разницей в аминокислотных остатках в положениях 8, 9 и 10 этой петли (формулы инсулинов см. стр. 165). Наконец, отмечен интересный факт, что наличие концевого аспарагина в цепи А тесно связано с биологической активностью гормона [c.163]

    Как видно из структурных формул, приведенных на фиг. 15, двадцать стандартных аминокислот (которые часто обозначаются, как это показано на фиг. 15, тремя первыми буквами их полных названий) можно разбить на несколько подгрупп в соответствии с природой их заместителей (боковых цепей) в основной цепи. Глицин, аланин, валив, лейиин, изо-лейиин, серии и треонин содержат простые алифатические заместители, а фенилаланин и тирозин — простые ароматические заместители. Цистеин и метионин содержат серу. Лизин, аргинин и гистидин имеют в своих алифатических боковых цепях вторую аминогруппу. У аспарагиновой и глутиминовой кислот в алифатических боковых цепях имеется вторая карбоксильная группа. Аспарагин и глутамин представляют собой простые амиды аспарагиновой и глутаминовой кислот. Наконец, триптофан, пролин и гистидин обладают гетероциклическими боковыми пенями. [c.40]


Смотреть страницы где упоминается термин Аспарагин формула: [c.248]    [c.228]    [c.391]    [c.391]    [c.24]    [c.425]    [c.52]    [c.77]    [c.21]    [c.75]    [c.93]   
Основы биологической химии (1970) -- [ c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагин



© 2024 chem21.info Реклама на сайте