Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь валентное в металлах

    Связь структурного фактора с электронными свойствами металлов. Одним из физических свойств металлов, непосредственно связанных с ближним порядком и энергией взаимодействия частиц, является электропроводность. Развитие квантовой теории твердого тела привело к выводу, что электропроводность жидких металлов можно вычислить теоретически по экспериментальным данным для структурного фактора а(5), задавая Фурье-образ потенциальной энергии взаимодействия электронов с атомами расплава. Основная идея, на которой базируются расчеты электропроводности, состоит в том, что рассеяние электронов проводимости жидкого металла описывается структурным фактором, аналогичным для рентгеновского излучения или нейтронов. Заметим, что структурный фактор рассеяния электронов проводимости ограничен значениями 5, которые для одновалентных металлов находятся слева от первого максимума а 8), а для двух (и более) валентных металлов —справа от него. В то же время, по данным рассеяния медленных нейтронов и рентгеновских лучей длиной волны X = 0,5—0,7 А, структурный фактор определяется до 5 = 15—20 А"1. Выясним, чем же обусловлено такое различие а(5). По современным представлениям, электроны проводимости металла нельзя рассматривать как свободные. Их движение в кристалле модулировано периодическим силовым полем решетки. Непрерывный энергетический спектр свободных электронов в -пространстве распадается на зоны разрешенных энергий — зоны Бриллюэна, разделенные интервалами энергий, запрещенными для электронов. На шкале энергий Е к) зоны Бриллюэна изображают графически в виде полос разрешенных значений энергии и разрывов между ними (рис. 2,13). В трехмерном/г-пространстве они имеют вид многогранников, форма которых определяется симметрией кристаллических решеток, а размеры — параметрами решетки. Для гранецентрированной кубической решетки первая зона Бриллюэна представляет собой октаэдр, а для объемно-центрированной решетки — кубический додекаэдр. [c.52]


    Несмотря на общность основных химических свойств, отдельные металлы довольно сильно отличаются друг от друга своей химической активностью. Металлическая природа элементов проявляется тем ярче, чем слабее связаны валентные электроны с ядром в атомах элементов. Следовательно, наиболее активными являются металлы главных подгрупп I и II групп периодической системы, так называемые щелочные и щелочноземельные металлы. По той же причине среди элементов одной группы металлическая природа ярче выражена у тяжелых и слабее у легких элементов. По своей химической активности основные металлы можно расположить в ряд активности [c.112]

    Изучение многочисленных ме1 аллическнх сплавов показывает, что фазы А, В и АВ способны растворять в твердом состоянии переменные ко-Л1 чества компонентов. Такие однородные твердые вещества, состав которых может изменяться, называют твердыми растворами. Весьма характерно, что в то время как эвтектические составы Е и , отличаются тонкослоистым строением, областям выделения твердых растворов соответствует полная однородность структуры образцов иод микроскопом. Примерами систем, когда два вещества (А и В) смешиваются взаимно в самых различных соотношениях в твердый или жидкий однородный раствор, могут служить се-рсбро—золото, вода—спирт, бензол—толуол. Последовательным изменениям состава здесь отвечает непрерывность изменения соответствующих свойств. В системе Ае—Аи (рис. 1.4) атомы металлов по радиусам, энергиям связи, валентным возможностям близки друг к другу (хотя проявляются и раз- [c.21]

    Теперь, когда мы немного разобрались, почему меняется прочность связи валентных элеюронов с ядром в зависимости от положения элемента в Периодической системе, то овладели аппаратом, который позволит понять разделение простых веществ на металлы и неметаллы. Повторим, что нам известно о металлах. Их отличает металлический блеск, высокая тепло- и электропроводность, прочность и пластичность. Атомы металлов имеют низкие значения энергии ионизации. Их электроотрицательность тоже относительно невелика. Как связаны эти свойства со строением  [c.54]

    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]


    Химическая коррозия. Химической коррозией называется процесс разрушения металла, происходящий в результате протекания гетерогенных химических реакций, не сопровождающихся возникновением электрического тока между отдельными участками поверхности металла. Следовательно, коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами, которые входят в состав окислителей, принимающих валентные электроны от металла. Химическая коррозия характерна для сред, не прово-дящих электрический ток (газы, жидкие неэлектролиты), [c.189]

    Все эти результаты доказывают, что образование гидрокарбонилов не является обязательным при изомеризации, как это предполагали некоторые исследователи [45]. Поскольку карбонилы металлов можно рассматривать как я-аллильные комплексы нуль-валентного металла и для их активирования требуется подвод тепловой энергии или энергии квантов, то очевидно, что при этом происходит диссоциация одной из связей Ме—С. [c.110]

    Кристаллические решетки металлов сходны с атомными решетками. Но в атомных решетках связи между атомами ковалентные, а в металлах мы встречаемся с новым видом химической связи металлической связью. Валентные электроны не закреплены в металлах каждый за своим атомом или своей парой атомов (как в ковалентных связях), а могут отщепляться от атомов и свободно блуждать между ними. Такие электроны осуществляют связь между ионами металла, наподобие прослойке воды между сложенными вместе пластинками она позволяет перемещать пластинки относительно друг друга, но сопротивляется отрыванию одной пластинки от другой. Из тако- го внутреннего строения металлов проистекают их характерные, общие физические свойства  [c.121]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла получает возможность покинуть узел кристаллической решетки и перейти в воду. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т. е. окружается ориентирующимися вокруг него молекулами воды. При этом оставшиеся в металле электроны являются носителями отрицательного заряда. Таким образом,у поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающим к поверхности металла. При достижении определенной величины скачка потенциала дальнейший переход ион-атомов металла в раствор прекращается. Очевидно, что способность металла отдавать в раствор свои ион-ато-мы под воздействием силового поля молекул воды определяет различную величину скачка потенциалов в двойном электрическом слое. [c.29]

    Неметаллы в соединениях с водородом или металлами отрицательно валентны, а в соединениях с кислородом —положительно валентны. Атомы кислорода и фтора на внешнем слое содержат число электронов, весьма близкое к насыщению (соответственно 6 и 7 — это ns пр - и ns ир -электроны). К тому же и атомные остовы названных элементов содержат лишь по одному устойчивому двухэлектронному слою (заполненный электронами /С-уро-вень). Все это упрочняет связь валентных электронов с ядром. Как результат, кислород и фтор в химических реакциях энергичные акцепторы электронов, даже если они взаимодействуют с другими неметаллами. При этом последние приобретают положительную валентность. Следовательно  [c.85]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла покидает узел кристаллической решетки и переходит в раствор. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т.е. окружается ориентированными вокруг него молекулами воды. Оставшиеся [c.27]

    С другой стороны, число валентных электронов во внешних оболочках атомов металлов не превышает номера группы и равно, например, для щелочных металлов единице, а для щелочноземельных — двум. Поскольку же оно всегда меньше числа ближайших атомов, с которыми соединен каждый атом (или ион) в кристаллической решетке металла, следует считать, что валентные электроны в этом случае не приурочены к отдельным связям, а делокализованы, т. е. равномерно распределены между всеми связями. Такая связь называется металли- [c.108]


    Как свободные атомы металлов, так и образуемые ими кристаллические структуры характеризуются относительной непрочностью связи валентных электронов внешних электронных оболочек с ядрами атомов и узлами кристаллических решеток. В силу этого наиболее существенным химическим свойством свободных металлов является их отчетливо выраженная восстановительная способность. Многие другие химические свойства металлов и их соединений также объясняются относительной легкостью отдачи своих электронов атомами металлов. Сопоставим важнейшие свойства металлов и неметаллов в виде следующей схемы  [c.111]

    Атомы большинства металлов на внешнем энергетическом уровне имеют небольшое количество электронов. Так, среди типичных металлов по одному электрону на внешнем уровне содержат 16 элементов, по два - 58, по три - всего 4 элемента, и ни одного - только палладий. Посмотрите, как расположены металлы в Периодической системе. Их расположение позволяет предполагать слабую связь валентных электронов с ядром, т. е. низкие значения энергии ионизации и низкую электроотрицательность. [c.54]

    Способность элементарных веществ испускать электроны под воздействием электромагнитных волн — фотоэлектрический эффект — характерна для металлов. В этом случае она объясняется слабостью связи валентных электронов в атомах. Чем слабее связаны электроны в атомах, тем меньшая энергия кванта излучения требуется для их отрыва. В соответствии с этим фотоэлектрический эффект легче всего осуществляется у щелочных металлов, которые испускают электроны под воздействием не только ультрафиолетовых, но даже и длинноволновых лучей видимого света. [c.45]

    В карбонилах металлов типа Fe( 0)5, Ti( 0)7, Сг(СО)б, аммиакатах типа [Pt(NH3)4] СЬ и др. отсутствует классическое валентное взаимодействие, так как у атомов С и N в молекулах СО и NHs нет неспаренных электронов, а связь осуществляется за счет координационных валентностей металла и молекул лигандов. [c.55]

    II. Валентность металлов и неметаллов. Атомы металлов на внешнем слое содержат небольшое число электронов (обычно 1—2 это ns -или л5 Электроны). Такой слой далек от насыщения (т. е. от конфигурации ns np ). В связи с этим атомы металлов слабо удерживают свои валентные электроны и при взаимодействии с неметаллами выступают как доноры электронов, превращаясь при этом в положительно заряженные ионы. [c.84]

    По физическим свойствам все металлы - твердые вещества (кроме ртути, которая при обычных условиях жидкая), они отличаются от неметаллов особым видом связи (металлическая связь). Валентные электроны слабо связаны с конкретным атомом и внутри каждого металла существует так называемый электронный газ. Поэтому все металлы обладают высокой электропроводностью (т. е. они - проводники в отличие от неметаллов-диэлектриков), особенно медь, серебро, золото, ртуть и алюминий высока и теплопроводность металлов. Отличительным свойством многих металлов является их пластичность (ковкость), вследствие чего они могут быть прокатаны в тонкие листы (фольгу) и вытянуты в проволоку (олово, алюминий и др.), однако встречаются и достаточно хрупкие металлы (цинк, сурьма, висмут). [c.157]

    Гидриды металлов В-групп отличаются прежде всего тем, что состав их обычно не соответствует валентности металлов. Часто встречаются среди них гидриды переменного состава, образующие с элементарными металлами твердые растворы. Гидриды этой группы представляют собой по внешнему виду и ряду свойств металлоподобные вещества с металлической связью между атомами. Обладают восстановительными свойствами, но химически значительно более инерт- [c.19]

    Согласно современным представлениям в металлическом кристалле электроны ведут себя не так, как в отдельных, свободных атомах, например в атомах паров металла. В последнем случае электроны могут располагаться в каждом атоме лишь на ограниченном числе энергетических уровней. В кристалле же эти энергетические уровни для валентных электронов расширяются вследствие объединения одинаковых уровней всех отдельных атомов данного кристалла. Такие объединения называются электронными зонами, или полосами. Электроны, принимающие участие в химической связи (валентные), располагаются в отдельной зоне, называемой валентной. Выще располагается свободная от электронов энергетическая зона, или зона проводимости. В металлах при наложении разности электрических потенциалов электроны легко переходят из нижней валентной зоны в верхнюю свободную зону проводимости. Именно поэтому металлы являются хорошими проводниками электричества. [c.164]

    Восемнадцать валентных электронов (см. раздел 6.4.2) заполняют все нижние уровни вплоть до e g. Связи между металлом и кольцами обусловливаются МО uig и e g, образующимися за счет перекрывания dz dyz и dxz с л-орбиталями циклопентадиенильных колец, при этом происходит перенос заряда с л-МО колец на dxz, dyz и 4p -, Лру-кО железа и встречный перенос с dz >, dx -y ,ii d y на я -МО циклопентадиенилов, в результате возникает распределение [c.311]

    В пределах одной группы по мере роста числа электронных слоев в атоме и увеличения его радиуса связь валентных электронов с ядром ослабевает, и восстановительные свойства у элементов проявляются сильнее, а окислительные — ослабевают. Сопоставляя электроотрицательность элемента с его положением в периодической системе, можно указать, что наиболее типичные неметаллы, являющиеся сильными окислителями, находятся в конце начальных периодов, а типичные металлы, являющиеся сильными восстановителями, занимают места в начале больших периодов (рис. 52). [c.205]

    Наиболее известными и распространенными электронодефицитными веществами являются металлы и металлические соединения — металлиды. Речь идет о металлах и металлидах в конденсированном состоянии. В газообразном состоянии металлические молекулы ничем не отличаются от других типичных молекул по природе химической связи. Например, молекулы щелочных металлов Lio, Na2, К2, s2, как и молекула водорода Но, характеризуются парноэлектронной ст., 5-связью. Однако металлы и металлиды в их обычном твердом состоянии коренным образом отличаются от их пара. Возьмем, к примеру, кристаллический литий, объемно-центрированная решетка которого показана на рис. 56. Каждый атом лития окружен восемью другими, и один 2 -электрон атома лития должен обеспечивать связи с 8 ближайшими соседями. Следовательно, в металлическом литии существует большой дефицит валентных электронов против парноэлектронной двухцентровой ковалентной связи. Это означает, что металлы и металлиды нельзя [c.119]

    Проблема электронной структуры переходных металлов далека от полного решения и в настоящее время при описании свойств-металлов нельзя обойтись без применения как метода молекулярных орбиталей МО, так и метода валентных связей ВС, способствующих выяснению строения металлов в нескольких разных аспектах. Прочность связи в металлах и межатомные расстояния в них более удобно описываются методом ВС. Однако при этом утрачивается возможность описать явление электропроводности, изящная трактовка которого дается в методе МО. Наряду с этим величина энергии сублимации свидетельствует о том, что в связывании активное участие принимает большее число электронов, чем следует пз простого метода МО. В этом отношении метод ВС облада ет определенным (хотя и небольшим) преимуществом. [c.147]

    В книге большое место отведено взаимодействию металлов друг с другом, а также металлов с неметаллами, в результате чего образуются вещества с металлическим типом связи. Взаимодействие металлов между собой представляет большой интерес хотя бы потому, что подавляющее большинство элементов Периодической системы (более 80 из 105) является металлами. К этому надо добавить колоссальное практическое значение металлов, металлических соединений и твердых растворов на их основе. Четко разграничены важнейшие характеристики элементов — валентные состояния и степени окисления. О валентных состояниях элемента нельзя говорить, если неизвестно химическое строение вещества, в состав которого входит данный элемент. В отличие от других курсов общей [c.3]

    Метод ВС не может интерпретировать металлическую связь. В металлах с их высокими координационными числами наблюдается сильный недостаток вален р-ных электронов по сравнению с двухэлектронной и двухцентровой ковалентной связью. С точки зрения ММО металлическая связь характеризуется дефицитом электронов против нормальной ковалентной связи. Поэтому порядок связи в металлах и истинных металлидах может быть любым дробным числом. Отсюда металлиды, как правило, не подчиняются правилам классической валентности, т.е. ковалентности. Из-за этого для истинных металлидов невозможно предсказать их формульный состав на основе классических представлений о валентности, а потому здесь нужны другие концепции. [c.95]

    В этом комплексе частицы Н и Н+, располагаясь симметрично относительно оси связи между молекуло воды и металлом (Н2О—М), образуют молекулярный ион Н2+, связанный одновременно с поверхностью металла и с молекулой воды. Связь с металлом обеспечивается за счет валентного электрона, связь с молекулой воды — за счет результативного положительного заряда иона. Переходный комплекс может появиться и без предварительного акта разряда и образования адсорбированного атома водорода. Для этого необходимо, чтобы один из двух ближайших адсорбированных понов водорода приобрел электрон. Электрохимическая десорбция, по Гориучи, таким образом, не обязательно должна проходить через разряд гидроксониевого иона на поверхности металла, уже частично покрытой атомами водорода. [c.407]

    По мнению ряда исследователей, хемосорбцию на металлах можно объяснить, предположив, что образование связи между металлом и молекулой сорбата определяется наличием у металла донорных или акцепторных электронных уровней. Металлы с простой валентной оболочкой, образующей 5-зопу, являются типичными донорами электронов с малой плотностью уровней в зоне. Такие металлы хорошо адсорбируют акцепторы электронов, т. е. молекулы окислителей. Однако пз-за большой прочности образующейся связи с переходом металла в другую фазу (окисел, сульфид и т. п.) такие металлы, как правило, непригодны в качестве катализаторов. [c.21]

    Нахождение электронов водорода в электронном газе соответствующей решетки металла дает основание говорить в таких случаях о металлическом типе связи водорода. Этот тип химической связи полностью реализуется лишь в гидридах переходных металлов VI—VHI групп. У переходных 1металлов V, IV и у некоторых металлов III групп происходит постепенный переход к солеобразным гидридам, которые типичны для непереходных металлов I и II групп. Основной причиной этого перехода от металлического к ионному ти- пу связи следует считать уменьшение электроотрицательности металлов при продвижении влево по периоду и, как следствие, оттягивание валентных электронов металлов к атому водорода. В то же время гидриды переходных металлов I и II групп, также как непереходных металлов III группы занимают промежуточное положение между солеобразными гидридами и летучими гидридами непереходных элементов V, VI и VII групп. В этом же направлении, начиная с типично металлических гидридов, наблюдается плавный переход и в типе связи — от металлической к атомной связи валентные электроны атома водорода во все большей степени оттягиваются к его партнеру по связи вследствие возрастания электроотрицательности последнего. Таким образом, оказьгаается, что у гомеополярных гидридов элементов главной подгруппы VII группы атом водорода поляризован положительно. [c.645]

    Металлы подгруппы 1А периодической системы элементов И. Менделеева 1.1, Ыа, К, КЬ, Сз п Рг называются щелочными. Щелочноземельными металлами называются эле.менты подгруппы ПА Са, 5г, Ва, Ра на.ходящиеся в этой же подгруппе Ве и Мй к щелочноземельным металлам не относятся. В соответствии с электронным строением атомов щелочных металлов оии всегда одновалентны. Щелочноземельные металлы, Ве и в невозбужденном состоянии проявляют нулевую валентность. При возбуждении их атомы приобретают электронную ко)1фиг рацию наружного слоя пз пр и становятся двухвалентны.ми. За счиг образования дони )но-акцепторных связей валентность элементов может увеличиться, что особенно характерно для Ве. [c.127]

    Температура плавления металлов. Твердое тело начинает плавиться, когда кинетическая энергия движения его частиц становится соизмеримой с энергией их притяжения друг к другу. Таким образом, чем меньше прочность химической связи в металлах, тем ниже температуры их плавления. Прочность химической связи в металлах определяется количеством валентных электронов атома элемента, причем увеличение их числа увеличивает прочность связи. Определяющим фактором увеличения с номером периода прочности связи между атомами ( -элементов является увеличение (по модулю) энергии з-элек-тронов из-за эффектов проникновения. Эффект проникновения з-электронов под (1- и /-электронные подоболочки стабилизирует состояние электронов и понижает их энергию. Наличие неспаренных (п — 1) -электронов также увеличивает прочность химической связи в металлах за счет образования дополнительных ковалентных связей. Увеличение размеров атомов действует в противоположном направлении, как и увеличение координационного числа. Характер изменения температуры плавления металлов по периодам периодической системы во многом близок к изменению их плотности. В целом для металлов соблюдается следующая закономерность  [c.322]

    Полингу принадлежит следующее полуэмпирическое рассмотрение радиусов атомов в металлах. Он принимал, что в металлах имеет место суперпозиция различных сеток валентных- гомеополярных связей в духе описанной в гл. XXII теории резонанса валентных структур. При этом рассмотрении можно говорить о средней кратности связей в металле. [c.498]

    На страницах этой книги, рекомендованной кафедрой Общей химии Уфимского нефтяного института в качестве учебного пособия для студентов нехимических специальностей по теме Химическая связь и строение молекул , рассказывается о том, как наука подошла к современным представлениям о химической связи, основанным на принципах квантововолновой теории. В ней значительное внимание уделено методу валентных схем и обобщению на основе этой теории известных закономерностей структурной химии Р-элементов. Метод молекулярных орбиталей использован для объяснения характера химической связи в металлах. Брошюра может оказаться полезной также преподавателям химии средних школ и техникумов, аспирантам и научным работникам. [c.2]

    В периодической системе они образуют главную подгруппу I группы химических элементов. В атомах щелочных металлов содержится по одному внешнему, или валентному, электрону. Отдавая валентный электрон, их атомы обращаются в однократно положительно заряженные ионы. Во всех своих соединениях щелочные металлы одновалентны и образуют только ионные связи. Из металлов щелочные металлы — самые активные ими начинается электрохимический ряд напряжений. Гидроокиси щелочных металлов, в том числе известные вам NaOH — едкий натр, или каустическая (в переводе жгучая ) сода, и едкое кали КОН, опасны в обращении. Они разъедают кожу и ткани, поэтому называются едкими щелочами. Подобно гидроокисям, растворимы в воде н все соли ще.1ючных металлов, с которыми приходится нам встречаться все эти соли относятся к сильным электролитам. [c.128]

    Наиболее известными и распространенными электронодефицитными веществами являются металлы и металлические соединения — мепгаллиды. Речь идет о металлах в конденсированном состоянии. В газообразном состоянии металлические молекулы ничем не отличаются от других типичных молекул по природе химической связи. Например, молекулы щелочных металлов Ы2, Каг, К2, Сзз, как и молекула водорода Н2, характеризуются парно-электронной гг - -связью. Однако металлы и метгшлиды в их обычном твердом срстоянии коренным образом отличаются от их пара. Возьмем, к примеру, кристаллический литий, объемно центрированнаия решетка которого показана на ршс. 50. Каждый атом лития окружен восемью другими, и один 25-электрон атома лития должен обеспечивать его связи с 8 ближайшими соседями. Следовательно, в металлическом литии существует большой дефицит валентных электронов против парно-электронной двухцентровой ковалентной связи. Это означает, что металлы и металлиды нельзя интерпретировать, оставаясь в рамках МВС. Кроме того, метод локализованных электронных пар не может объяснить такое ярко выраженное свойство металлов и металлидов, как их электрическая проводимость. [c.88]

    Металлические кристаллические решетки и металлическая связь. Кристаллы металлов строятся из атомов элементов, которые имеют один, два пли три внешних (валентных) электрона (редко больше). Прн конденсации металлического пара эти электроны утрачивают связь с отдельными атомами и обобшествляются теми положительными остовами атомов, которые остаются от них при коллективизации наружных электронов. Это прпЕюдит к образованию связи между системой положительных остовов атомов в металлической решетке. [c.155]

    Повышенная стойкость никеля по сравнению с ванадием, очевидно, обусловлена характером комплексных связей обоих металлов в молекулах асфальтенов. Лишь небольшая часть общего содержания металлов присутствует в асфальтенах в виде порфиринов остальное количество содержится в виде других металлоорганических комплексов. Однако установлено, что весь ванадий, содержащийся в кувейтской нефти, является четырехвалентным. Никель же двухвалентен. В результате этого не все валентности, например ванадия, в ванадий-пор-фириновых комплексах, насыщены в координационной плоскости он одновременно связан и с атомом кислорода (или, возможно, серы) связью, перпендикулярной к плоскостной структуре остальной части молекулы. То обстоятельство, что атом кислорода выступает из плоскости комплексного соединения, облегчает доступ металла к катализатору при посредстве вы- ступающего /-етероатома. Никель, валентность которого, на-118 [c.118]


Смотреть страницы где упоминается термин Связь валентное в металлах: [c.105]    [c.116]    [c.149]    [c.581]    [c.361]    [c.371]    [c.171]    [c.495]   
Структурная неорганическая химия Том3 (1988) -- [ c.3 , c.458 ]

Структурная неорганическая химия Т3 (1988) -- [ c.3 , c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность металлов

Связи в металлах

Связь валентная



© 2025 chem21.info Реклама на сайте