Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Новые методы анализа люминесценция

    Широко освещаются работы автора книги и его сотрудников в области поисков и исследования новых люминесцентных реагентов, комплексонометрических индикаторов, люминесцентных реагентов для кинетических методов анализа и изучения новых возможностей люминесцентного метода, связанных с применением низких температур. Два последних направления открывают новые широкие возможности люминесцентного метода для определения катионов — гасителей люминесценции и для определения ряда элементов по люминесценции их комплексов с неорганическими аддендами. [c.7]


    Новый этап в развитии и использовании метода люминесцентного анализа начался с 1952 г., когда Э. В. Шпольский и со<-трудники открыли эффект существования тонкой квазилинейчатой структуры электронных спектров многоатомных молекул [16, 20]. Было показано, что при использовании низкомолекулярных парафинов (Сб—Сю) неразветвленного строения в качестве матрицы в условиях низких температур (ниже — 196°С) диффузные полосы люминесценции многоядерных ароматических углеводородов способны расщепляться на ряд узких и четких линий. Было показано, что существует принципиальная возможность определять тип молекулярной структуры неизвестных соединений на основе анализа его квазилинейчатого спектра и данных о связи структуры спектра со строением молекул. [c.215]

    Для наблюдения флуоресценции в растворе необходимо переводить соединения урана в ураниловые, та как соли четырехвалентного урана, равно как и уранаты, в этих условиях не флуоресцируют. С а алитиче-ской точки зрения наибольши интерес представляет люминесценция и в перлах из КаР. Одновременно может наблюдаться мешающая определению люминесценция КЬ. В перлах из КР она не проявляется, но свечение и слабее [7, 14]. Метод определения II в перлах пол юстью себя оправдал и находит широкое применение кап в лабораторных, так и в полевых условиях [15]. Метод этот далеко не нов, еще в 1935 г. отмечалась его исключительная чувствительность [16], тем не менее работа но усовершенствованию метода и его видоизменению применительно к конкретным задачам, и объекту анализа продолжалась [17]. Усилия исследователей направление в основном на повышение чувствительности метода, на выяснение факторов, влияющих на яркость флуоресценции уранила в перлах, на устранение необходимости очищать от примесей соединение урана, выделяемое из анализируемого образца и вводимое в перл. [c.163]

    Методика анализа хроматограмм в основном варианте разработана основателем хроматографического метода М. С. Цветом. Однако за последние годы, благодаря применению современных методов физики и химии, в методику внесено много нового. В настоящее время для анализа хроматограмм с успехом используются многие физико-химические методы — люминесценция, спектроскопия, рентгеноструктурный анализ, электрометрические методы, метод меченых атомов и др. [c.16]

    Должен знать "Технологическую схему и регламент нескольких сложных производств светосоставов физико-химические основы и сущность люминесценции, химических реакций и технологических процессов различные методы и приемы наработки малотоннажных (заказных) светосоставов, освоение новых марок светосоставов устройство, принцип работы оборудования, контрольно-измерительных приборов схему арматуры и коммуникаций физико-химические свойства сырья, полуфабрикатов и вспомогательных материалов, ГОСТы и технические условия на сырье и готовую продукцию методику проведения контрольных анализов, [c.94]


    Из всего изложенного следует, что физическую химию кристаллофосфоров следует рассматривать прежде всего как раздел новой, недавно сформировавшейся области науки — физической химии кристаллов с дефектами. Вместе с тем она имеет определенные специфические особенности, позволяющие считать ее самостоятельным разделом науки. Они заключаются как в характере изучаемых объектов, так и в используемых методах, которые так или иначе связаны с измерением характеристик люминесценции. В то же время для анализа экспериментальных результатов привлекается теоретический аппарат классической физической химии. Таким образом в методическом отношении физическая химия кристаллофосфоров является плодом синтеза физики, твердого тела, в особенности люминесценции, с классическими представлениями физической химии. [c.11]

    Припципиальпо новый метод количественного люминесцентного анализа представляет разработанный Феофиловым метод, основанный на использовании наблюдаемой у некоторых кристаллических веществ зависимости спектра люминесценции от концентрации люминесцирующего компонента. В ряде случаев, особенно у веществ со спектром люминесценции, состоящим из нескольких полос или линий, эта зависимость выражена достаточно резко. В качестве примера на рис. 23 приведена зависимость спектра люминесценции синтетического рубина (А120д-Сг) от концентрации хрома, обусловливающего окраску и интенсивную красную люминес- [c.71]

    Хроматография осадочная. Основана на химич. реакциях хемосорбента с компонентами смеси растворенных веществ с образованием новой фазы — осадка. Через слой слабощелочной окиси алюминия, находящейся в колонке, пропускают раствор, содержащий ионы, дающие окрашенные гидроокиси, напр, ртутп, меди и серебра. В верхней части колонки образуется желтовато-серая зона гидрата окиси ртути, ниже — голубая зона гидрата окиси меди и еще нпже — коричневая зона окиси серебра. Осадочная X. нашла применение для экспрессного качественного анализа смесей катионов и анионов. На фоне бесцветного сорбента окраски воспринимаются глазом гораздо лучше, чем в растворе поэтому подобный метод анализа чувствительнее, чем классический. Химич реагент может быть предварительно адсорбирован на твердом носителе. Если через слой активного угля, помещенного в колонку и содержащего адсорбированный диметилглиоксим, пропускать раствор солей, загрязненных примесями тяжелых металлов (никеля, железа, меди и т. п.), то последние образуют трудно-растворимые соединения на поверхности угля. Этот способ разделения носит название адсорбционно-комилексообразовательной X. примером служит быстрый способ глубокой очистки р-ров сульфата цинка, идущего на изготовление рентгеновских экранов, от следов никеля и железа, тушащих люминесценцию. [c.378]

    Предложенные раннее М. А. Колбиным с сотрудниками (см. настоящий сборник ) метод и аппаратура для анализа малые-. новой части битумов позволяют радикально сократить продолжительность анализа. Сущность метода заключается в следующем. Асфальтены отделяются от битума обычным путем, а мальтены разделяются на силикагеле, модифицированном добавкой воды, при помощи набора растворителей, например, изо-, октана, бензола, этанола. Вымываемые из хроматографической коленки группы соединений, растворенные в соответствующем растворителе, подаются на транспортирующую цепочку, во время движения которой растворитель испаряется, а компоненты битума поступают в печь и сгорают. Образовавшаяся двуокись углерода регистрируется катарометром, величина ее пика позволяет судить о количестве соответствующего компонента битума. Принимая площадь всех пиков пропорциональной общему количеству мальтбнов и учитывая количество предварительно выделенных асфальтенов, легко рассчитать групповой химический состав битума. Как видно, количественная оценка группового химического состава по этому методу не связана с громоздким отбором и высушиванием многочисленных фр 1кций, что необходимо при классическом анализе битума на основе определения коэффициента преломления (или люминесценции). [c.33]

    Спектрофотометрия и люминесценция остаются важнейшими методами определения следовых количеств- неорганических веществ в объектах окружающей среды В настояп ее время даже наметились тенденции в усилении их роли и значения в общей системе химического анализа, что объясняется по крайней мере двумя факторами. Во-первых, это создание устройств (типа проточно-инжекционной системы), позволяющих полностью автоматизировать химический анализ, и, во-вторых, это создание химических сенсоров с фотометрическими или люминесцентными датчиками. Фактически это — новая концепция химического анализа, позволяющая осуществлять единичные или массовые определения в экспрессном варианте с высокой точностью и надежностью, а также проводить дистанционный анализ в экстремальных условиях, подойти к новым типам приборов с меньшей (в 10 —10 ) металлоемкостью и энергозатратами, что существенно удешевит выполнение массовых анализов, — это особенно важно при контроле за загрязнением окружающей среды. [c.6]

    Мы попытались возможно полнее очертить сферу и методы целесообразного использования рассматриваемого приема люминесцентного анализа в целях идентификации или обнарунченпя веществ по флуоресценции, так как в недавнем прошлом отсутствие ясности в этом вопросе нередко приводило к тому, что при помощи люминесцентного анализа пытались разрешать задачи, заведомо этим методом неразрешимые. Так, например, в немецкой работе, опубликованной в 1940 г. [14], в статье, озаглавленной Люминесценция пахучих веществ , автор описывает свечение 252 ( ) просмотренных им органических соединений (спиртов, альдегидов, кето-нов, простых и сложных эфиров) и в конечном счете приходит к выводу, что флуоресценция — свойство настолько атипичное, что не годится для целей распознавания веществ. Разумеется, автор прав нельзя решить, посмотрев люминесценцию жидкости, какое вещество она собой представляет. Однако неправильно поставлена сама задача невозможность ее решения этим путем с очевидностью вытекает из самой природы явления и не требует подтверждения экспериментом. [c.64]


    НОВЫМИ образцами, могут перейти в группу люминесцирующих и что люминесценция части молибденатов, змеевиков и некоторых других минералов объясняется только недостаточной свежестью образцов, наличием на них люминесцирующих вторичных продуктов окисления и гидратации , т. е,, иными словами, наблюдаемая люминесценция минерала на самом деле представляет собой люминесценцию поверхностного слоя. Комовский [281 удачно использовал это обстоятельство и начал применять в отношении минералов второй прием люминесцентного анализа он наблюдает люминесценцию не самого минерала, а того продукта, который из него получается в результате химической реакции, проводимой в поверхностном слое. Так, например, вольфрам в руде легко определить, если он в ней содержится в виде вольфрамата кальция (Са У04 — минерал шеелит) как выше указывалось, люминесценция этого минерала, возбуждаемая ультрафиолетовыми и катодными лучалти, настолько интенсивна, что по яркому свечению голубого цвета легко в породе подсчитать зерна этого вольфрамата. Однако другие вольфраматы— вольфрамит (Ее, Мп) У04 и гюбнерит Мп УО — представляют собой темные непрозрачные минералы, не обладающие способностью люминесцировать. Таким образом, в отношении их методы люминесцентного анализа непригодны. Между тем, как указывает Комовский, в Советском Союзе имеется много месторождений этих минералов, и представляет большой интерес распространить на них экспрессную методику люминесцентного анализа . [c.288]

    В результате творческого подхода к методам молекулярного анализа раскрываются возможности к открытию новых областей его применения, например, можно рассмотреть исследование спектров люминесценции сложных органических соединений при низких температурах. Мы указывали, что спектры люминесценции жидкости или твердых тел являются недостаточно характерными, представляя собой широкие расплывчатые полосы, с плохо выраженными максимумами, что значительно затрудняет их использование для спектроаналитических целей. Однако, если вызвать люминесценцию некоторых веществ при температуре жидкого азота или водорода и подобрать растворитель для данного вещества, то спектр резко меняет свой вид спектр флуоресценции или фосфоресценции представляет собой ряд резких спектральных линий, ширина которых не превосходит [c.135]

    В детстве А. А. Гринберг много читал и даже сам писал приключенческие рассказы, его интересовали и всякие технические новинки. В 1916 г. он с золотой медалью окончил гимназию и поступил в Петроградский университет, во вновь созданную медицинскую группу физико-математического факультета. В 1917 г. эта группа была переведена в 1-й Медицинский институт. Здесь А. А. Гринберг провел свои первые экспериментальные работы по химии, которая интересовала его все больше и больше. Под руководством профессора И. А. Залесского он проделал дополнительные практикумы сначала но количественному анализу и органическому синтезу, а затем но методам определения связанного азота. В конце 1918 г. после отъезда профессора Залесского в Польшу Александр Абрамович перешел на кафедру биохимии, где работал под руководством профессора Б. И. Словцова. На этой кафедре он выполнил научное исследование, посвященное изучению люминесценции, наблюдаемой при медленном окислении пирогаллола. Работа — К вопросу о хемилюминесценции — была доложена на заседании Отделения химии Русского физико-химического общества в декабре 1919 г., а затем напечатана в журнале этого Общества. В апреле 1919 г. А. А. Гринберг поступил на работу в Российский пищевой институт, где под руководством Б. И. Словцова изучал влияние сахарина на газообмен в организме человека. [c.3]


Смотреть страницы где упоминается термин Новые методы анализа люминесценция: [c.83]    [c.3]    [c.51]    [c.133]    [c.59]   
Нефтяные битумы (1973) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Люминесценция

Новые методы анализа



© 2024 chem21.info Реклама на сайте