Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Люминесценция определение

    Люминесцентный метод анализа основан на измерении интенсивности свечения (люминесценции) атомов, ионов, молекул и других более сложных частиц при их возбуждении различными видами энергии, чаще всего квантами ультрафиолетового и видимого излучений. Главным преимуществом люминесцентного метода является низкий предел обнаружения (10 мкг/мл и менее), что практически важно при определении следовых количеств элементов. [c.88]


    Контроль качества алмазов по степени поляризации их люминесценции. Определение напряжений в непрозрачных объектах с помощью оптически-активных покрытий. [c.515]

    Применение люминесценции для аналитических целей включает широкую область использования ее для идентификации веществ, для обнаружения малых концентраций веществ для контроля изменений, претерпеваемых веществом для определения степени чистоты веществ. Широко применяются измерения люминесценции при изучении кинетики обычных химических реакций. Высокая чувствительность метода позволяет фиксировать малую степень превращения, а иногда по люминесценции промежуточных соединений становится возможным установить механизм химической реакции. Люминесцентные методы используются в биологии, в частности, для исследования структуры белков методом флуоресцентных зондов и меток. [c.49]

    Помимо измерения спектров люминесценции изучение люминесценции может включать в себя измерение спектров возбуждения, поляризации люминесценции, определение квантового выхода люминесценции и времени жизни возбужденного состояния. При измерении спектров люминесценции сканируется длина волны излучаемого света. При изучении спектров возбуждения, наоборот, монохроматор анализатора устанавливается на определенной длине волны (например, в максимуме спектра флуоресценции), а сканируется длина волны возбуждения. [c.62]

    ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ЛЮМИНЕСЦЕНЦИИ ОПРЕДЕЛЕНИЕ ЛЮМИНЕСЦЕНЦИИ [c.9]

    Гл. V посвящена аналитическим применениям люминесценции — определению строения и количественному анализу органических и неорганических веществ, а также их смесей. [c.6]

    При монохроматическом возбуждении люминесценции определение специфично [c.219]

    Количество солей в исследуемом и стандартных растворах должно быть примерно одинаковым, так как сульфаты и хлориды уменьшают интенсивность люминесценции. Определению мешают ионы Ре +, А13+, W +, Мо +, Sb +, Sb + и F". [c.310]

    Большую информацию можно получить из спектра возбуждения люминесценции. При измерении спектров люминесценции сканируется длина волны излучаемого света. При изучении спектров возбуждения, наоборот, монохроматор анализатора устанавливается на определенной длине волны (например, в максимуме спектра флуоресценции), а сканируется длина волны возбуждения. Щели монохроматора возбуждения должны быть достаточно малыми, чтобы получить хорошо разрешенный спектр. Получаемая при этом зависимость интенсивности флуоресценции от длины волны, прокалиброванная с учетом интенсивности возбуждающего света, и является спектром возбуждения данной люминесценции. После исправления полученного спектра с учетом спектрального распределения источника возбуждения он должен совпадать со спектром поглощения люминесцирующего вещества. [c.68]


    Люминесцентные индикаторы позволяют производить объемное определение в мутных и окрашенных растворах, так как при титровании наблюдают не изменение окраски раствора, а изменение цвета люминесценции, который не зависит от окраски и прозрачности раствора В графе Изменение цвета люминесценции знак обозначает отсутствие лю- [c.381]

    На основании длительной экспериментальной работы установлено, что результаты анализа тяжелых нефтепродуктов по вышеописанному методу хорошо согласуются с показателями реологических свойств гудронов, битумов, крекинг-остатков, асфальтов. Как видно из данных табл. 4, групповые составы битумных материалов, определенные методами ГрозНИИ, ВНИИ НП и БашНИИ, близки. Однако достоинствами описываемого метода являются простота и быстрота исполнения. Несмотря на визуальную оценку цветов люминесценции, нами достигнута хорошая сходимость при повторных определениях. [c.193]

    В таблице приведены условия количественного определения элементов флуорометрическим методом. Определение производится по интенсивности люминесценции или по ее гашению. [c.461]

    Важно подчеркнуть, что наличие в молекуле высокомолекулярных углеводородов и их производных многоядерных (не менее трех колец) ароматических конденсированных структур обусловливает не только способность их к люминесценции, но и их канцерогенную активность, т. е. способность при определенных условиях инициировать или стимулировать развитие в организме раковой опухоли. [c.283]

    Связь люминесценции со структурой молекул. Поскольку флуоресценция определяется специфическими изменениями электронного состояния молекулы, то существует определенная связь испускания с молекулярной структурой. Рассмотрим подобную связь на примере органических соединений. [c.57]

    Метод Ван — Гаеке в меньшей степени зависит от интерферирующих веществ, поэтому кажется более надежным. Недавно был разработан метод пламенной люминесценции для определения серы. Другим важным достижением в области анализа серы является метод получения постоянных концентраций этого газа в потоке газа-разбавителя. Для этого маленькие запаянные тефлоновые трубки заполняют оксидом серы (IV), который диффундирует через стенки с постоянной скоростью (при постоянной температуре). [c.100]

    Благодаря ярко выраженному различию в цветах люминесценции масел и смол удается легко обнаружить границу между ними при пропускании деасфальтизата испытуемого продукта через колонку с адсорбентом. В результате изучения различных методов анализа, основанных на применении люминесценции [31—36], разработан метод определения группового состава битумов, основанный на коагуляции асфальтенов изооктаном из бензольного раствора продукта с последующим адсорбционным разделением деасфальтизата и отбором фракций по цветам люминесценции. Опытами подтверждено, что фракция битумов и гудронов с фиолетовым цветом люминесценции имеет п о до 1,49, что дает основание отождествлять ее с парафино-нафтеновыми углеводородами. Фракция С голубым цветом люминесценции имеет по от 1,49 до 1,54, следовательно, она соответствует моноциклическим ароматическим углеводородам. Фракция с зеленым цветом люминесценции [c.189]

    Привести примеры качественных определений методом люминесценции в технике, сельском хозяйстве, медицине и т. д. [c.155]

    Привести примеры количественных определений элементов и веществ методом люминесценции. [c.156]

    Между онектрами люминесценции и поглощения существует определенная зависимость. Спектры люминесценции всегда сдвинуты в более длинноволновую область по сравнению со спектрами поглощения. В связи с тем, что методы УФ-спектро-окаиии наиболее эффективны ири анализе ароматических веществ, люминесцентные методы также используются для исследования этих соединений в нефтяных молекулярных растворах. Эталонные спектры ароматических соединений, встречающихся в нефтях и нефтепродуктах, представлены в работе [99]. Так, в спектре свечения нафталина выделяется набор полос различной интенсивности в интервале 320—340 нм. Фенантрен обладает характерными полосами в области 345—375 им, а антрацен — 370—430 нм. Следует отметить, что достаточно узкие полосы флуоресценции (короткоживущей люминесценции) могут быть получены лишь при низких темшературах е помощью эффекта Шпольско го [15]. В растворах происходит ущирение полос, и спектр флуоресценции обычно представляет широкую бесструктурную полосу. [c.57]

    Для люминесцентного определения бора в руде навеску а растворили и после соответствующей обработки довели объем раствора до 100,0 мл. Затем к 1,00 мл раствора добавили спиртовый раствор бензоила и измерили интенсивность люминесценции полученного раствора. Она оказалась 1х- [c.156]

    В результате по длине столба адсорбента образуются зоны, насыщенные отдельными компонентами смеси. Если отдельные компоненты имеют, различную окраску, то эти зоны легко отличить по цвету. Если же компоненты бесцветны, но способны к люминесценции, то для определения границ между этими зонами слой адсорбента исследуют в ультрафиолетовом свете. [c.144]


    Несколько определеннее объясняется люминесценция нефтей в ближней ультрафиолетовой области. Работы по изучению люминесценции нефтей в ультрафиолетовой области стали появляться лишь в последнее время [111, 112], Было показано, что наиболее коротковолновое излучение нефти и ее низкокипящих фракций вызывается бензолом и его гомологами. Конденсированные бициклические ароматические углеводороды (нафталин и его метилзамещенные гомологи) вызывают фл оресценцию в несколько более длинноволновой области. Флуоресценция конденсированных трициклнческнх ароматических соединений (антрацен, фенантрен и их гомологи) уже расположена на границе ультрафиолетовой и видимой областей спектра. [c.484]

    Для обнаружения вещества во многих случаях достаточно визуально наблюдать люминесценцию. Однако если присутствует смесь люминесцирующих веществ, то наблюдение люминесценции затрудняется в таких случаях применяют светофильтры для выделения люминесценции определенной длины волны иЛи проводят предварительное хро.матографичсское разделение. [c.360]

    НЫХ ИОНОВ по их свечению в галогеноводородных кислотах при — 196°С. У хлоридных комплексов РЬ и иодидных комплексов Т1 при размораживании растворов от—196 до 0°С наблюдается резкое изменение цвета люминесценции от синего к зеленому. При регистрации люминесценции в длинноволновой области для этих растворов наблюдается всплеск зеленой люминесценции, определение комплексного соединения по которому более чувствительно и специфично, чем при фиксированной температуре (см. таблицу). Величина, всплеска зависит от области регистрации (рис. 1). Предел обнаружения галогенидов зависит от концентрации ртутеподобных ионов в растворе (рис. 2) и [c.70]

    Измерение времени затухания люминесценции. Среднее время жизни X возбужденной молекулы играет существенную роль при рассмотрении механизмов реакций возбужденных молекул. Импульсный метод определения т состоит в том, что раствор флуоресцирующего вещества облучают коротким импульсом света 1 — 2— —4 не), а. интенсивность флуоресце-нции измеряют как функцию времени. Интенсивность флуоресценции (/ф)< в момент времени I после начала измерения связана с интенсивностью флуоресценции в начальный момент (/ф)о соотношением [c.70]

    В третьей графе — Метод определения — приводится последователь[[ость прибавления реактивов и получаемый результат (образование осадка, окрашенного соединения, окрашивание пламени, люминесценция под действием ультрафиолетового света). В некоторых случаях указывается, что реакция проводится на фильтровальной бумаге (капельные реакции) или выполняется микрокристаллоскопическим методом (на предметном стекло). Сведения о микрокрнсталлоскопических реакциях см. также в таблице Микрохимический анализ (стр. 235). В случае проб на пламя указывается окраска пламени и длина волны наиболее характерных спектральных линий (более слабые линии даны в скобках). В таблице приведены лишь наиболее характерные люминесцентные (флуорометрические) определения. Более подробные сведения можно найти на стр. 461. [c.191]

    Нефти и высококипящие нефтепродукты обладают замечательным свойством светиться под действием ультрафиолетовых лучей. На нснользовании этой особенности нефтей основаны методы люминесцентного анализа для нознания химической природы сложных молекул, входящих в состав нефтей и вызывающих люминесцентное свечение. Фотолюминесценция или излучение, возникающее при возбуждении светом, как правило, наблюдается у молекул довольно сложного химического состава и строения. Существует, следовательно определенная связь между строением вещества и склонностью его к люминесценции. Поэтому исследование спектра люминесценции нефтепродуктов может дать весьма ценные сведения для суждения о строении ароматических структурных звеньев сложных молекул, входящих в состав высококипящих нефтяных фракций. [c.482]

    Капельный люминесцентный анализ [103] основан на очень грубой, приближенной зависимости между содержанием битума в породе и формой люминесцирующего пятна, возникающего при нанесении канли растворителя на поверхость породы. Характер битума ориентировочно определяется по оттенкам люминесцентного свечения пятна. Для увеличения точности анализа в дальнейшем этот вид методики был усовершенствован и в известной мере стандартизирован в следующем нанравлепин нефть или вытяжку битума, полученную путем извлечения из породы холодным растворителем, разбавляют определенным растворителем, чтобы получить раствор известной концентрации, и затем сравнивают люминесценцию его с серией эталонных растворов различной концентрации. Последние приготовляют растворенпем нефти или рассеянного битума в том же растворителе. Метод этот напоминает колориметрический анализ. Основным недостатком метода является то, что не принимается в расчет различие [c.485]

    Однако визуальное наблюдение люминесценции имеет ряд существенных недостатков. Прежде всего при наблюдении люминесценции сказывается в большей или меньшей степени субъективность восприятия общей картины, обусловленная наблюдательностью, острото зрения и цветочувствительностью или тонкостью дифференциации цветов в видимой области спектра у наблюдателя. Объективность картины люминесценции, которая отражает определенные реальные связи в сложной молекуле, еще больше искажается нри попытках описать словами или выразить в виде цветных зарисовок это сложное явление. Зарисовки картины люминесцентного свечения, не говоря уже о том, что для их выполнения требуются определенные художественные способности и квалификация, а также значительная затрата времени и кропотливого труда, как правило, лишь отдаленно напоминают истинную картину свечения. Они получаются более красивыми , чем реально наблюдаемое свечение не выдерживаются такие важные показатели люминесценции, как яркость или интенсивность свечения основных полос и их ширина, а переходы от одной цветовой полосы свечения к другой вместо постепенной, неясной, расплывчатой становятся отчетливыми, резкими. [c.487]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    Как правило, дисперсные системы не монодиснерсны. Частицы распределены но размера.м по определенному закону. Если известны дополнительные сведения о структуре частиц дисперсной фазы (например, поверхностное натяжение на границе раздела фаз), то формула Левпшна — Перрена может применяться для определения оставшихся неизвестных параметров. Обобщение формулы Левшнпа — Перрена для полидисперсных систем приведено в [138]. Преимуществом метода поляризованной люминесценции является то, что о)1 позволяет наблюдать начальную стадию ассоцпации молекул и образования дисперсий. Однако он не работает, если частицы достаточно велики. Кроме того, метод селективен к природе молекул, поскольку каждое вещество обладает своим спектром люминесценции. Верхняя граница определения размеров составляет 10 нм. [c.98]

    Измерение фосфоресценции обычно проводят в твердой фазе при температуре жидкого азота, поскольку в жидких растворах фосфоресценция интенсивно тущится ничтожными количествами примесей. Для разделения обычной флуоресценции и фосфоресценции или замедленной флуоресценции необходимо периодически прерывать пучок возбуждающего света и регистрировать испускание только в течение темпового периода, т. е. когда короткоживу-щая флуоресценция оказывается полностью затухшей. В большинстве современных спектрофлуориметров это достигается тем, что при измерении спектров фосфоресценции вокруг образца вращается полый цилиндрический стакан, имеющий вырезы в боковой стенке. При вращении стакана вокруг его оси образец освещается возбуждающим светом, проходящим через вырезы, и долгоживущая люминесценция регистрируется через те же самые вырезы. Для измерения общей люминесценции вращающийся стакан надо удалить. Поскольку при использовании стакана с вырезами поглощается только некоторая доля возбуждающего света, то для определения полной скорости испускания долгоживущей люминесценции наблюдаемую интенсивность надо разделить на коэффициент фосфориметра, равный отношению светового периода к сумме времени светового и темпового периодов. Это справедливо, если время затухания долгоживущей люминесценции достаточно велико по сравнению со временем светового и темпового периодов, поскольку уменьшение интенсивности за воемя темпового периода будет [c.67]

    Часто соединение, имеющее долгоживущую люминесценцию, также имеет и быструю флуоресценцию. Если выход последней уже определен обычным способом, то выходы фосфоресценции и замедленной флуоресценции при тех же условиях можно определить, не сравнивая с другим раствором. Отношение выхода замедленной флуоресценции к выходу быстрой флуоресценции вычисляется сравнением интенсивностей одного из главных максимумов в спектрах, которые идентичны по форме. Регистрируемый спектр испускания не надо исправлять, но следует сделать поправки на коэффициент фосфориметра и чувствительность прибора, при которой измеряются два спектра. [c.70]

    Интенсивность люминесценции, испускаемой раствором, прямо пропорциональна интенсивности возбуждающего света и общей чувствительности регистрирующей системы. Однако увеличивая мощность или эффективность источника возбуждения, нельзя неограниченно улучшать метод, т. е. уменьшать предельно обнару-жимую концентрацию раствора. Ниже определенной концентрации повышается роль других факторов, которые ограничивают возможность метода, и увеличение чувствительности прибора при этих условиях не дает результатов. Лимитирующим фактором могут быть фотохимические реакции или свет, попадающий на фотоумножитель не от исследуемого люминесцирующего раствора, а от посторонних источников, т. е. величина суммарного фона. Возникновению люминесцентного фона может способствовать ряд следующих факторов, связанных как с прибором, так и с анализируемым образцом рассеянный свет, рамановское испускание растворителя, люминесценция кювет и окружающего пространства, люминесци-рующие примеси, содержащиеся в растворителе или реагентах. [c.72]

    Определение концентрации люминесцирующих веществ в смеси. Люминесцентный метод может применяться для определения концентрации люминесцирующих веществ. Интенсивность люминесценции I пропорциональна интенсивности возбуждающего света /а, поглощетш а и квагаовому выходу люминесценции ф  [c.81]

    Аналитическое определение экологоопасных соединений в товарных и отработанных продуктах. Наиболее распространенными соединениями этого типа в нефтяных маслах являются ПА для их анализа традиционно используют методы на основе квазили-нейчатых спектров люминесценции при низких температурах [87]. [c.93]

    Осознание важности экологических проблем заставляет исследователей привлекать для контроля суперэкотоксикантов все современные высокочувствительные методы аналитической химии. Так, при определении низких содержаний ионов высокотоксичных металлов в основном применяются методы оптической спектроскопии и люминесценции (атомноэмиссионная спектроскопия с возбуждением от высокочастотного плазменного факела (ИСП-АЭС), атомно-абсорбционная спектроскопия (ААС) с электротермической атомизацией и др.) (3 , а также инверсионная вольтамперометрия (ИВА) с химически модифицнрова1Шыми электродами [41. Для определения органических загрязнителей наряду с хроматографией наблюдается тенденция к более широкому использованию хромато-масс-спектрометрии, иммунохимических и флуоресцентных методов 2,5 Следует заметить, что в области разработки методов контроля за состоянием загрязнения природных сред суперэкотоксикантами имеется много нерешенных проблем В первую очередь это относится к методам экспрессного определения органических веществ. [c.244]

    В аналитической практике отечественных лабораторий наиболее широко эффект Шпольского используется для идентификации и количественного определения бенз(а)пирена [18]. Это относится и к профамме фонового мониторинга природных объектов. Для целей мониторинга ПАУ создан банк спектров при 77 К, который опубликован в виде атласа 27 . На основе проведенных исследований рафаботаны высокочувствительные и селективные методы определения ПАУ и их гфоизводных в многокомпонентных природных и техногенных системах в воздухе, почве, растениях, атмосферных осадках, природных и сточных водах, донных отложениях, горных породах, минералах, нефтях, высокотемпературных пиролизатах, отработанных газах автомобильных даигателей, саже и т д. Предел обнаружения в однокомпонентных растворах для разных соединений находится в диапазоне от 0,01 до 1 нг/мл. Дл[я огфеделения ПАУ в последнее время применяют метод единого стандарта, который базируется на сравнении спектров люминесценции анализируемых рас- [c.252]

    Смесь пентана с воздухом (объемное отношение углеводорода к воздуху менялось в различных опытах от 1 8 до 1 1) пропускалась при атмосферном давлении со скоростью 5—6 м1час через реакционную стеклянную трубку (диаметр 5,4 см, длина 10 см), температура которой медленно повышалась. При 220—225° в смеси появляется слабое бледно-голубое свечение, интенсивность которого увеличивается прп 240—245 и которое в интервале 260—265° сменяется довольно ярким холодным пламенем, возникающим у выходного конца реакционного сосуда и распространяющимся навстречу потоку газов со скоростью около 10 см сек. Холодным такое пламя называется потому, что температура в нем лишт, на 100—150° выше температуры окружающей среды. В описанном случае периодом индукции холодного пламенп является время, за которое газовая смесь протекает через реакционную трубку (с момента входа п до момента возникновения холодного пламени у конца трубки). Холодные пламена следуют друг за другом через определенные промежутки времени, становясь с ростом температуры сосуда все более медленными и диффузными. При температуре около 290° холодные пламена исчезают и взамен пх снова возникает люминесценция всей смеси с зонами максимальной яркости, которые также движутся навстречу газовому потоку. Начиная с 525—550° люминесценцию уже не удается обнаружить из-за свечения раскаленных стенок реакционного сосуда. В интервале 670— 710° у входа смеси в сосуд возникает истинное воспламенение, имеющее пульсирующий характер. [c.78]

    С люминесцентным методом могут конкурировать лишь более селективные методы — масс-спектроскопия или эмиссионная спектроскопия. Чтобы вызвать люминесценцию вещества, к нему необходимо извне подвести определенное количество энергии. Например, при поглощении квантов ультрафиолетового излучения частицы вещества переходят в возбужденное состояние, характеризующееся более высоким запасом энергии. Возбужде.чные частицы обычно довольно быстро теряют свою избыточную энергию и переходят в невозбужденное состояние. Такой переход может сопровождаться излучением (люминесценцией). Люминесцирующая частица, поглощая энергию возбуждения, превращает ее в собственное излучение. Эта важная особенность люминесценции отличает ее от других видов излучения. [c.88]

    Люминесценция характеризуется длительностью возбужденного состояния, которая у различных веществ имеет определенную среднюю величину. Поглощенная энергия некоторое время остается в возбужденной частице. Это время — средняя длительность возбужденного состояния (т) — определяется свойствами возбужденной частицы и действием иа нее внещней окружающей среды. В отличие от температурного излучения люминесценция — неравновесный процесс, Люми-несцирующая молекула, потерявшая избыточную энергию возбуждения, при комнатной температуре не может восстановить ее при соударениях с невозбуждеиными молекулами. Таким образом, возбужденное электронное состояние молекулы при комнатной температуре не находится в равновесии с тепловым полем и с энергией движения частиц вещества. При возбуждении энергия поглощенного кванта частично расходуется на изменение конфигурации электронного облака молекулы, на колебание ее ядер и на изменение ее вращения. Поэтому квант люминесценции в целом меньше поглощенного кванта и представляет собой сложную комбинацию кванта электронного перехода и квантов измергения колебательного и вращательного состояний молекулы. [c.88]

    БЕТА-ЛУЧИ (Р-лучи) — излучение, состоящее из электронов (или позитронов) и образующееся при -распаде радиоактивных изотопов. При наличии электрических зарядов Б.-л. под действием электрического и магнитного полей отклоняются от прямолинейного направления, что используется для определения отношения заряда частиц к их массе. Скорость частиц Б.-л. близка к скорости света. Б.-л. ио.чизируют газы, вызывают химические реакции, люминесценцию, действуют на фотопластинки и т. д. [c.44]


Смотреть страницы где упоминается термин Люминесценция определение: [c.232]    [c.213]    [c.486]    [c.66]    [c.108]    [c.250]    [c.252]    [c.254]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.661 , c.664 ]

Фото-люминесценция растворов (1972) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Люминесценция



© 2025 chem21.info Реклама на сайте