Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот жидкий температура

    Эффект Джоуля—Томсона находит практическое применение при сжижении газов. При последовательном сжатии, охлаждении и расширении газа и многократном повторении этого цикла температура газа постепенно понижается до его точки кипения, когда он превращается в жидкость. При сжижении воздуха получается смесь жидкого азота и жидкого кислорода, которую можно разделить, пользуясь различием в их температуре кипения. Азот, имеющий температуру кипения —195,8 °С, испаряется из жидкого воздуха раньше, чем кислород (температура кипения [c.162]


    Сжижение газов получило широкое применение в промышленпости. Аммиак, хлор (и некоторые другие газы) большей частью сохраняются и транспортируются в сжиженном состоянии в стальных баллонах или цистернах. Для многих целей в таком же виде применяется и углекислота. Сжижение воздуха используется для разделения его на составные части, главным образом для выделения азота. Жидкий воздух применяется и в лабораторной практике для получения низких температур до —180° С. Жидкий водород дает возможность понижать температуру до 15—20° К, жидкий гелий — до 4,2° К и при кипении в вакууме — до 0,8° К .  [c.111]

    Продуктами сгорания называются газообраз- ые, жидкие и твердые вещества, образующиеся в результате процесса горения. Состав их зависит от состава горящего вещества и условий его горения. Органические и неорганические горючие вещества состоят главным образом из углерода, водорода, кислорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при горе-иии и образовывать продукты СО2, СО, Н2О, ЗОг и РгОа. Азот при температуре горения не способен окисляться и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. [c.27]

    В то время как в жидкой фазе азотная кислота очень медленно воздействует на парафиновые углеводороды, в паровой фазе нитрование проходит быстро. Обнаружено, что плавно реагируя, газообразные углеводороды вместе с нормальным и изопентаном дают смесь мононитрированных продуктов динитросоединения не образуются [705], даже если азотной кислотой обрабатывать нитроалканы [706]. Нитрование выполняется под атмосферным давлением при помощи или азотной кислоты, или двуокиси азота при температурах порядка от 250 до 600° С при температурах 400—500° С получают оптимальные результаты. Легкость нитрования увеличивается в следующем порядке метан, этан, пропан, бутан и пентаны последние очень отзывчивы и разница между скоростями их нитрования незначительна. [c.147]

    Окись углерода, содержащаяся в конвертированном газе, поглощается жидким азотом при температуре минус 190 С и давлении 2—3 МПа. [c.49]

    На рис. 29 изображена схема одной из установок для адсорбции азота при температуре жидкого воздуха. Ее важнейшими частями являются калиброванная ампула 1 [c.73]

    В барботажных колоннах диаметром 45,7 и 19 мм и высотой слоя соответственно 1,20 и 1,16 м исследовали [198] продольное перемешивание, применив в качестве трассера тепловой поток и определяя профиль температуры по высоте колонны. Газовой фазой служил азот, жидкой — вода, ацетон, четыреххлористый угле-1 род, циклогексанол, этанол, 10%-ный раствор этанола в воде и 50%-ный раствор сахара в воде. Газ распределялся через перфо- рированный диск и сопла. Колонна была снабжена вакуумной изоляцией. [c.199]


    Для охлаждения деталей используется сухой лед (двуокись углерода), имеющий температуру —78 °С, или жидкий азот, имеющий температуру —196 °С. [c.109]

    В промышленности жидкий кислород получают сжижением воздуха с помощью холодильных машин. От азота жидкий кислород можно отделить путем испарения азота за счет разницы в температурах кипения (у азота она ниже). [c.111]

    Сущность работы. Работа состоит из двух частей. В первой части измеряют изотерму адсорбции азота при температуре жидкого азота. По данным измерений, исходя из уравнения БЭТ (55), [c.123]

    Навеску силикагеля около 30 мг с примерным содержанием ОН-групп (или воды) 0,3—0,6 мг экв/г навески помещают па ложное дно реактора. Включают ток газа-носителя (расход 50— 60 мл/мин), В сосуд Дьюара 4 медленно заливают жидкий азот и через 1—2 мин после его заполнения устанавливают расход гелия 30 мл/мин. Включают печь 9 и выбирают напряжение, соответствующее температуре, указанной преподавателем. При этой температуре образец отжигают 2—3 ч. В сосуд Дьюара время от времени добавляют жидкий азот. Затем температуру образца понижают до 90—100°С, по истечении определенного времени в сосуд Дьюара 7 заливают охлажденный в жидком азоте гептан и добавляют жидкий азот до образования на его поверхности корочки твердого гептана, которая поддерживается в течение всего эксперимента. [c.70]

    Проведено тщательное изучение хрупкого разрыва монокристаллов чистого цинка с различной исходной ориентацией плоскости базиса относительно оси проволоки. Для этого с помощью специальных приемов выращивали монокристаллы с заранее заданным углом наклона плоскости базиса — от 10 до 80° ориентировку определяли методами рентгеноструктурного анализа. Во время растяжения образцы охлаждали жидким азотом до температуры —196° С. [c.222]

    Неправильно. Кислород кипит при — 183°С. Точка кипения азота — 196°С. Если жидкий воздух, имеющий температуру — 200°С, медленно нагревать, он начинает кипеть при — 196°С. Это выкипает азот. После того как весь азот испарится, температура жидкого воздуха снова медленно повышается, пока не будет достигнута температура — 183°С, при которой начнется кипение кислорода. [c.325]

    Водород удаляют методом конденсации азота при температуре жидкого азота, кипящего при пониженном давлении, е откачкой неконденсирующегося в этих условиях водорода, или хроматографическими методами, описанными я первой части этой книги и яа стр. 97, 100. [c.181]

    Графики для определения /", а также Кр для растворов гелия в жидком азоте, жидком метане и сжиженных азотно-метановых смесях приведены на рис. 86—88 [6]. При одинаковых давлениях и температурах растворимость гелия в жидком этане ниже, чем в жидком метане, а в жидком пропане еще ниже. [c.179]

    Удаление из азота примесей инертных газов более затруднительно. В этом случае прибегают к методу конденсации азота при температуре жидкого азота, кипящего под пониженным давлением, с последующей фракционированной дистилляцией газа в другой конденсатор, охлаждаемый таким же способом. [c.178]

    Если предположить, что азот может занимать такие же объемы пор, как Аг или Оа, то исходя, например, из объема пор цеолитов СаА, NaX и шабазита, можно сделать вывод, что средняя плотность адсорбированного азота составляет примерно 0,95 г/см для жидкого азота при температуре кипения она равна 0,80 г/см 176]. Величина плотности 0,95 г/см соответствует плотности жидкого азота при температуре 46 К. Поскольку при 46 К давление паров жидкого азота составляет 0,14 мм, необычному поведению адсорбированного азота отвечает увеличение плотности, которое достигается понижением температуры кипения на 31 К. [c.445]

    Процесс нитрования циклогексана окислами азота изучался А. И. Титовым [61]. На основании своих опытов (взаимодействие циклогексана с двуокисью азота при температурах от 20 до 330° в запаянных трубках или открытых сосудах, в жидкой или газовой фазе) А. И. Титов пришел к следующим выводам. [c.394]

    Срезы нарезаются поодиночке и переносятся на охлаждаемый жидким азотом до температуры 123 К держатель. Держатель (рис. 12.10) и срезы, находящиеся при температуре 123 К, переносятся из камеры микротома на предварительно охлажденный столик растрового микроскопа на стержне в ва-куумно-плотной камере на предварительно охлажденном медном массивном держателе (рис. 12.11). [c.306]

    Постоянно увеличивая глубину погружения стержня в жидкий азот, понижают температуру зеркальца, наблюдая за состоянием его поверхности. Момент появления на зеркальце сконденсированных капелек влаги фиксируют по регистрирующему прибору как точку росы. Чтобы увеличить точность и объективность замера начала конденсации влаги иногда прибор [c.318]

Рис. УП-И. Зависимость коэффициента Генри (в кгс/см мол. доля) для растворов СО в жидком азоте от температуры. Рис. УП-И. <a href="/info/26365">Зависимость коэффициента</a> Генри (в кгс/см мол. доля) для растворов СО в <a href="/info/15378">жидком азоте</a> от температуры.

    Другими факторами, влияющими на расход жидкого азота, являются температура и давление. [c.322]

    Неочищенный этиловый эфир щавелевоуксусной-З-С - кислоты нагревают с 6 объемами 20%-ной серной кислоты в медленном токе азота при температуре 65—75° в течение 3 час. (примечание 1). После охлаждения кислый раствор экстрагируют эфиром, экстракт сушат и концентрируют, а остаток перегоняют при давлении 1 10 мм рт. ст. в ловушку, охлаждаемую жидким азотом (примечание 2). Перегнанную пировино-градную-З-С кислоту растворяют в 5 объемах метилового спирта и обрабатывают раствором едкого кали в этиловом спирте (избыток 20%). Образовавшуюся смесь разбавляют [c.391]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    Для поддержания температур до —60 °С можно пользоваться описанными выше ультратермостатами, снабженными охлаждающим приспособлением. В криостатах с испарителем для жидкого азота достигаются температуры до —190 °С. Если, однако, необходимо поддерживать при постоянной температуре сравнительно большие количества жидкости в течение значительного времени, используют криостаты с компрессором с минимальной рабочей температурой —120 °С. [c.69]

    Лед. При атмосферном давлении вода обычно кристаллизуется в виде льда-1ь, который имеет гексагональную структуру, похожую на структуру тридимита. Если тщательно контролировать температуру (от —120 до —140 °С), то лед можно кристаллизовать также иепосредственно из паров, желательно в вакууме, в виде кубической модификации лед-1с со структурой типа кристобалита. (Обычно эту кубическую модификацию получают количественно нагреванием модификаций высокого давления от температуры жидкого азота.) При температурах >153 К лед-1с метастабилен по сравнению с обычным льдом-1п. Существование второй метастабильной кристаллической модификации, льда-1У, твердо установлено для ОгО, ио с меньщей достоверностью — для НгО. Стекловидная модификация льда [c.383]

    Для регистрации рентгеновского излучения в дистанционных анализаторах применяют те же детекторы, что и в других типах рентгеноспектральной аппаратуры. Наилучшим энергетическим разрешением обладают полупроводниковые детекторы (ППД), но они, как правило, требуют охлаждения до температуры жидкого азота. При температуре выше 135 К резко ухудшается энергетическое разрешение спектрометров, а довольно сильная зависимость положения линий от температуры (0,23 кэВ / К) требует температурной стабилизации спектрометра. В табл. 14.70 приведены основные характеристики материалов детекторов, от которых зависит величина предельного энергетического разрешения ППД. [c.29]

    Аналогичная авария произошла на установке промывки жидким азотом конвертированного газа от окиси углерода. При аварии разорвался трубопровод азотоводородной смеси на участке от низкотемпературного блока до коллекторной арматуры. Причина аварии — попадание жидкого азота, имеющего температуру —180°С, в трубопровод из углеродистой стали. Очевидно, в этом случае была нарушена герметичность змеевика переохладителя или клапанов дозировки, азота. [c.24]

    Обращение с сухим льдом, сжиженными и сжатыми газами. Твердая двуокись углерода (сухой лед) имеет температуру порядка —81 °С, поэтому обращаться с ней необходимо осторожно, так как при небрежном обращении возможно обмораживание. Еще более осторожного обращения требуют сжиженные газы, например жидкий азот, жидкий воздух и пр. Такие газы хранят в сосудах Дьюара (рис. 10), а большие количества газа—в стальных баллонах. Нужно быть очень осторожным при обращении с баллонами, нaпoлнeнньLми сжатыми газами. [c.21]

    Активность катализатора определяют следующим образом. Пробу катализатора объемом 200 мл засыпают в реактор, помещают реактор в печь и нагревают, продувая азотом до температуры крекинга. По достижении температуры крекинга через слой катализатора пропускают сырье в течение 10 мин. Жидкие продукты крекинга собирают в стеклянный прнемгшк, а газ — в газометр. [c.150]

    Из табл. 15 следует, что при понижении температуры холодной стенки с 76 до 20 К,, т. е. при замене жидкого азота жидким водородом, коэффициент теплопроводности снижается на 20—30 Д. Экспериментально установлено, что при температуре холодной стенки 20 К переносится несколько меньшее количество тепла, чем при 76 °К. Это объясняется уменьшением степени черноты алюминия с понижением температуры. При замене стеклобумаги найлоновой сеткой теплопроводность повышается примерно в 3—Л раза, что объясняется повышенной теплопроводностью найлонового волокна, большим его диаметром и отсутствием термического контактного сопротивления между отдельными волокнами. Замена же алюминиевой фольги на алюминизированный майлар приводит к еще большему возрастанию теплопроводности изоляции [119, 133]. [c.121]

    В конструкции низкотемпературной камеры-приставки УРНТ-180 применена безвакуумная схема охлаждения образца потоком сухого газа. В качестве хладагента используется жидкий азот. Измерение температуры и ее контроль производится термопарой медь — константан с соответствующей электронной схемой регулирования. В камере-приставке 1 обеспечена возможность вращения образца в собственной плоскости со скоростью 80 об/мин. Запас жидкого азота позволяет проводить непрерывные измерения в течение 2,5 часов. Стабилизация температуры, осуществляемая с помощью блока регулировки температуры, во всем температурном интервале не хуже 0,3°. Посадочное устройство, обеспечивающее надежное крепление камеры-приставки к гониометру, имеет достаточное число регулировок, позволяющих производить ее юстировку известными методами [5]. [c.137]

    Контактное нафевательное устройство [4] позволяет осуществить испытание неметаллических материалов в широком интервале положительных и отрицательных температур. При отрицательных температурах испытания начинают с охлаждения жидким азотом до температуры минус 150°С металлических стержней нафевателя. Испытания от комнатных температур начинают без предварительного охлаждения стержней путем включения нафевателей. [c.70]

    В реактор загружают гидрофобные компоненты (жирные кислоты, амиды, спирты и т.д.) и едкий натр, после чего из реактора удаляют воздух, дважды продувая его азотом. Смесь нагревают при перемешивании до 15С °С, затем откачивают газовозвушную смесь, понижая давление до 20 мм рт.ст., и подают в реактор в токе азота жидкий этиленоксид. Давление азота в реакторе поддерживают равным 0,7 атм. Далее прекращают подачу этиленоксида, чтобы давление уменьшилось. В пропессе реакции давление в аппарате понижается, а температура повышается. Реакшонную смесь охлаждают, добавляют этиленоксид, после чего температура повышается до 170 - 180 °С, а давление - до 0,25 - 0,2Й МПа. В конце реакции давление в реакторе снижается до атмосферного. [c.85]

    Первой стадией процесса переработки коксового газа является очистка его от Нг5 и СО2 под давлением 1,2—1,6 МПа. Затем при этом же дайлении н при низких температурах из коксового газа конденсируют и выделяют углеводороды. Наконец, последней стадией получения азотоводородной смсси является очистка газа от остаточного содержания СН и СО путем промывки его жидким азотом при температуре —190°С. В результате получают азотоводородную смесь, очищенную от катализа-торных ядов, которая после сжатия компрессорами до высоких давлений поступает на синтез аммиака. [c.61]

    Синильная кислота. Бесцветная легкая низкокипящая жидкость ассоциирована за счет водородных связей (при комнатной температуре степень ассоциации равна 2). Существует в двух таутомерных формах нормальной (Н— N ) и изо-форме (Н—N ) при 25° С в равновесной смеси 0,5% нзо-формы, при охлаждении количество нзо-формы уменьшается. Разлагается при сильном нагревании и на свету (образуются формиат аммония, щавелевая кислота и бурый взрывоопасный осадок неустановленного состава). Неограниченно смешивается с водой, проявляет слабые кислотные свойства, раствор называется циановодородной кислотой. В концентрированном растворе неустойчив и постепенно разлагается с образованием < рмиата аммония (ингибитор — следы серной кислоты). Нейтрализуется щелочами. Проявляет восстановительные свойства сгорает на воздухе, реагирует с галогенами, концентрированной серной кислотой, диоксидом азота. Жидкий H N — полярный протонный растворитель с высокой диэлектрической проницаемостью. Получение см. 202 , 203 , 212 839 . [c.103]

    Окончательную очистку гелия от иримесей проводят адсорбцией на активированном угле. При этом возможны различные варианты технологии и параметры процесса. На отечественных заводах адсорбционную очистку гелия проводят при высоких давлениях 6-18 МПа, ири этом предварительно производят конденсацию из него азота ири температурах 73-80 К. Для охлаждения используют жидкий азот. Наиример, на Оренбургском гелиевом заводе после осушки газа ири давлении 1,5 МПа, он сжимается до 17,5 МПа, проходит вторичную осушку и иодается в низкотемпературный блок. Гелий охлаждается в рекуперативных теилообменниках и двух конденсаторах, в первом из которых жидким азотом, кипящим иод небольшим избыточным давлением (температура кипения 80 К), во втором - азотом, кипящим иод вакуумом (температура кипения 70 К). При этом конденсируется азот и затем отделяется от газа. Остаточное содержание азота в гелии около 1 %. Окончательная очистка гелия от азота и других иримесей производится в адсорберах, заполненных активированным углем марки СКТ-б. Охлаждение адсорберов производится жидким азотом, кипящим ири темиературе 80 К. Регенерация угля производится горячим потоком гелиевого концентрата. При этом в рубашку адсорберов иодается горячий азот (предварительно сливается жидкий азот). Гелий после адсорберов подогревается в рекуперативных теилообменниках и иодается в цех наполнения баллонов. Давление процесса 17,5 МПа было выбрано для заполнения баллонов. Технико- [c.216]

    В зоне орошения установлено три коллектора 13 с десятью форсунками на каждом для распыления жидкого азота при температуре -196 °С. Для сбора неиспарив-шегося жидкого азота под лентой конвейера установлен поддон 15 из коррозионно-стойкой стали. При переполнении поддона азот насосом снова подается в форсунки, при этом перекрывается соленоидный вентиль на трубопроводе подачи жидкого азота из емкости. [c.955]

    Литий L, серебристо-белый мягкий металл. Ат. вес 6,94 плотн. 534 кг/м т. пл. 179° С т. кип. 1372° С уд. электр. сопр. 12,70-10 ом-см (твердого), 45,25-10" ом-см (жидкого). Теплота сгорания до Ь120 10330 ккал1кг коэф. теплопроводности 6, 2 ккал/(м-чХ X град). При нагревании на воздухе воспламеняется. Т. горения около 1300° С т. самовоспл. в воздухе 180— 200° С. Энергично разлагает воду. Реакция взаимодействия нагретого металла и воды сопровождается взрывом. Горит в двуокиси углерода. При взаимодействии с азотом при температуре красного каления литий воспламеняется. В концентрированной азотной кислоте плавится и загорается. Тущить порошкообразным графитом и сухими молотыми флюсами, аргоном, гелием. Тущение см. также Металлы. Средства тушения. [c.148]

    Взаимодействие проводят в двугорлой колбе вместимостью 250 мл с подсоединенным к ней обратным холодильником. Другое горло колбы закрывают резиновым колпачком. Обратный холодильник через охлаждаемую ловушку (для конденсации увлеченного паром растворителя) подсоединяют к диффузионному насосу и колбе, служащей приемником выделяющегося газа. Наличие кранов позволяет любую часть установки эвакуировать или наполнить воздухом или азотом. В реакционную колбу, в которую помещена магнитная мешалка, перегоняют примерно 150 мл высушенного над натрием к-бутнлового эфира и затем в атмосфере азота добавляют 5,75 г LIAIH4 (407о-нып избыток). Содержимое колбы замораживают жидким азотом, а аппаратуру эвакуируют. Затем путем осторожного нагревания доводят жидкость в колбе до кипения и кипятят 1,5 ч, после чего колбу опять замораживают жидким азотом н снова эвакуируют. К замороженной реакционной смеси из инъекционного шприца прибавляют путем прокалывания резинового колпачка 5 мл 99.75%-ного D2O (см. стр. 157). Газовыделение начинается при оттаивании содержимого колбы и при одновременном перемешивании магнитной мешалкой. Благодаря низкой температзфе колба покрывается снаружи льдом. Путем периодического погружения колбы в жидкий азот поддерживают температуру на таком уровне, чтобы слой льда на наружных стенках колбы не плавился. По мере замедления реакции добавляют еще две порции DsO по 6,5 мл каждая (всего 18 мл, 150%-иый избыток). В итоге получают 10 л дейтероводорода чистотой 97—997о- [c.163]

    Газ, выходящий из метанового конденсатора и состоящий главным образом из водорода, окиси углерода и следов метана, поступает в противоточную тарельчатую колонну, где контактируется с жидким азотом при температуре около —184° С и давленип 10,5—21 ат. При этом из газа практически полностью выделяются окись углерода и остающийся метан. Поток, отходящий с верха колонны, содержит 85—95% водорода, 5—15% азота и лишь десятитысячные доли процента окиси углерода и метана. Жидкий поток, отбираемый с низа колонны и содержащий окись углерода, азот и небольшое количество метана, поступает в испаритель для охлаждения поступающего газа. Состав и количества потоков, получаемых при очист1<е типичного коксового газа, приводятся в табл. 14.4 [24]. Этилен, метан и смесь окиси углерода с азотом обычно соединяют п в виде так называемого жирного газа используют в качестве топлива. [c.364]


Смотреть страницы где упоминается термин Азот жидкий температура: [c.25]    [c.48]    [c.515]   
Техника низких температур (1962) -- [ c.316 ]




ПОИСК







© 2024 chem21.info Реклама на сайте