Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк, строение атома

    Соединения бора с другими элементами. Существует много других типов соединений, в которых атом бора связан с азотом, фосфором, мышьяком, серой и углеродом. Борорганические соединения уже упоминались в разд. 12.5. Здесь мы отметим лишь некоторые соединения бора с азотом. Фрагмент —ЫН — ВК — идентичен структурному элементу—СН = СН—и может замещать его во многих соединениях. Мы уже отмечали графитоподобное строение нитрида бора ВЫ (разд, 12.2). Эту аналогию можно сделать более понятной, если принять, что истинное электронное распределение в связи В — N может быть описано резонансным гибридом, [c.291]


    Диапазон геометрических структур, для описания которых полезно обращаться к многогранникам, чрезвычайно широк. Так, например, правильный тетраэдр симметрии одинаково подходит как для молекулы тетрамера мышьяка, Аз4, так и для молекулы метана, СН (рис. 3-27). Однако в их строении имеется одно существенное различие. Оно состоит в том, что в молекуле все четыре атомных ядра, входящих в ее состав, расположены в вершинах правильного тетраэдра, ребрами которого служат химические связи между атомами мышьяка. В молекуле же метана имеется центральный атом углерода, от которого четыре химические связи направлены к четырем вершинам тетраэдра, где находятся атомы водорода. В данном случае ребра тетраэдра уже не являются химическими связями. [c.119]

    На основании приведенных данных можно считать твердо установленным экстремум значений проводимости, магнитной восприимчивости, плотности и микротвердости у стекол системы мышьяк—селен, содержащих 9 ат. % мышьяка. Наличие экстремальных значений характеристических величин свидетельствует о существенном изменении структуры стеклообразных сплавов в этой области составов. Л инимальное значение магнитной восприимчивости у стекол, содержащих -9ат. % мышьяка, связано с изменением степени деформации валентных электронных облаков в химических связях As—Se и Se—Se. Это изменение обусловлено статистическим распределением трехмерных пространственных структурных единиц образующегося AsaSes в структуре стеклообразного селена. В таких стеклообразных сплавах с максимально неупорядоченным строением затрудняется сквозной перенос носителей заряда, для них получены заниженные значения плотности и микро-твердости. Перенос носителей заряда с конца оборванной цепи на соседнюю цепь в таких стеклообразных сплавах требует преодоления значительного активационного барьера. Такой перенос может осуществляться в результате перекрытия электронных орбит в процессе низкочастотных термических колеба- [c.44]

    Общим для трех исследованных систем является наличие области максимальных значений парамагнетизма Ван-Флека. Для составов с максимальными значениями парамагнитной составляющей получены также экстремальные значения парамет-)0Б электропроводности и других физико-химических величин. 4з анализа полученных экстремальных значений следует, что стекла указанных составов характеризуются статистическим распределением структурных единиц АзЗез/г, АзЗз/г и ОеЗе4/г в полимерных цепях и циклах стеклообразных селена и серы. Такое распределение приводит к нарушению правильности чередования структурных единиц, нарушению исходного ближнего порядка и вносит тем самым дополнительную асимметрию в строение электронных оболочек атомов. Стекла в системе Аз—Зе с содержанием 9 ат. % мышьяка, в системе Аз—3 с содержанием мышьяка 12 ат. % и в системе Се—Зе с содержанием 6—7 ат, % германия имеют наименьшую степень [c.73]


    К химии отравляющих веществ можно применить аналогичные теоретические представления. И здесь, при рассмотрении состава и строения О. В., часто можно подметить группировки атомов, наличие которых определяет общий характер действия данного О. В. Эти группы, по аналогии с теорией красителей, можно назвать токсофорами . Типичнейшим токсофором, является, например, ненасыщенный (трехвалентный) атом мышьяка, атом серы или двухвалентный углерод. [c.31]

    Строение элементов. Только азот способен образовывать двухатомные молекулы с =5 М тройной связью. Их большая устойчивость доказывает наличие очень большого взаимного перекрывания обеих р-орбиталей, участвующих в образовании связей. В случае фосфора, мышьяка и сурьмы известны как молекулы тетраэдрической структуры (Р4, Аб4 и 5Ь4) с постепенно уменьшающейся устойчивостью, так и металлические структуры. Висмут существует только в металлическом состоянии. Во всех этих структурах каждый атом соединен тремя простыми связями (ст-связи) с тремя идентичными атомами (см. рис. 128 и 129, стр. 427). Металлические мышьяк, сурьма и висмут изоморфны и образуют бесконечные слоистые решетки, в которых каждый атом имеет трех ближайших соседей (с которыми он связан ковалентно) и трех более удаленных соседей (см. рис. 131, стр. 443). Различие между этими двумя типами соседних атомов уменьшается от Аз к В1, т. е. по мере усиления металлического характера элементов (см. стр. 451 и 454). [c.457]

    Пять комплексных анионов AsO , AsOsS -, ASO2S2 AsOSl и A S -имеют одинаковое строение атом мышьяка находится в центре тетраэдра, а по углам его расположены четыре атома — кислорода или серы. [c.482]

    Стекла с содержанием 25 ат. % мышьяка (Аз5з и близкие по составу) имеют цепочечное строение. [c.59]

    Наибольшее влияние оказывает таллий на термическую устойчивость и микротвердость стеклообразного АзгЗез, имеющего трехмерное пространственное строение. Термическая устойчивость стекол А58е1,5Т1у, содержащих - 28 ат. % таллия, понИ жается почти на 40%, а микротвердость на 30% по сравнению со стеклообразным триселенидом мышьяка. [c.193]

    При этих процессах изомеризации, которые имеют обратимый характер, атом серы (или соответственно мышьяка или азота) восстанавливается или окисляется лишь за счет изменения строения молекулы, т. е. изменения порядка взаимной связи имевшихся в молекуле атомов. При этом приобретение или потеря электронов этим атомом изомеризующейся части молекулы (серы в сульфогруппе или в эфирно группе, мышьяка в арсоногруппе или в эфирной группе и азота в нитрогруппе или в эфирной группе) [c.73]


Смотреть страницы где упоминается термин Мышьяк, строение атома: [c.392]    [c.585]    [c.223]    [c.164]    [c.57]    [c.235]    [c.171]    [c.235]    [c.171]    [c.145]    [c.66]    [c.333]    [c.190]    [c.88]   
Органическая химия (1972) -- [ c.333 , c.335 ]

Органическая химия (1972) -- [ c.333 , c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Атомов строение



© 2025 chem21.info Реклама на сайте