Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ некоторых соединений бора

    АНАЛИЗ НЕКОТОРЫХ СОЕДИНЕНИЙ БОРА [c.196]

    Ниже приводятся методы анализа некоторых соединений бора. [c.196]

    При подготовке к анализу, особенно при разложении кислотами, выпаривании и т. п., необходимо иметь в виду летучесть некоторых соединений бора. Литературные данные о летучести борной кислоты довольно противоречивы, но эти противоречия обусловлены главным образом различными условиями работы. При кипячении водных растворов или выпаривании нейтральных растворов, содержащих большие количества бора (10—100 мг), относительные потери незначительны. Однако они становятся весьма значительными при работе с микрограммовыми количествами. Особенно большие потери наблюдались при выпаривании солянокислых и даже нейтральных растворов досуха [1]. Для устранения потерь рекомендуют выпаривать растворы с суспензией гидроокиси кальция. [c.45]


    Обычно сложную структуру целевого вещества разделяют на фрагменты и затем на относительно простые кирпичики , из которых и начинают проектировать схему синтеза, идя в обратном направлении — от простого к сложному ( ретросинтетический анализ ). В будущем для этой цели реально использовать ЭВМ. Нельзя обойти обширную химию элементоорганических соеди-. нений. Например, известно уже более десятка тысяч только органических соединений бора, многие из которых эффективно исполь- зуются в органическом синтезе как реагенты, как промежуточные вещества при построении органических молекул различной сложности. Некоторые борорганические соединения выпускаются химической промышленностью как продукты (эфиры борной кислоты). [c.29]

    Анализ материалов, содержащих бор [13, 83], можно проводить как обычный силикатный, если предварительно удалить бор. Пробу разлагают кислотой или сплавляют с углекислым натрием. Плав выщелачивают соляной кислотой в фарфоровую чашку, которую помещают на водяную баню и выпаривают досуха. Осадок в чашке обрабатывают 10—20 мл метилового спирта, чтобы удалить бор в виде борнометилового эфира. Бор мешает определению кремния, так 1 ак борная кислота адсорбируется на осадке ЗЮг, что приводит к завышенным результатам. Наличие бора также мешает комплексометрическому определению ряда элементов, поскольку борная кислота способна образовывать с некоторыми из них комплексные соединения. [c.86]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Анализ чистого металлического бериллия и некоторых его соединений возможен без предварительного химического обогащения и отделения основы. Металл перед анализом переводят в окись термической обработкой его раствора [245, 465]. Для этого металл растворяют в соляной кислоте, раствор выпаривают и прокаливают сухой остаток при 700 С [465]. Если в анализируемом образце предусматривается также определение бора, то металл для перевода в окись прокаливают при 900° С в печи Марса в токе увлажненного О2 в течение 2 час. [465]. Анализируемый образец смешивают с графитовым порошком, карбонатом бария или гидроокисью бария [1252]. Чувствительность определения кальция в бериллии составляет 2-10 % [465]. [c.118]

    На искусственных смесях и чистых органических соединениях установлена возможность одновременных определений кремния и бора или фосфора и каждого из этих элементов с галогеном. Определение галогенов выполнялось меркуриметрическим титрованием. Некоторые примеры анализа приведены в табл. 5. [c.204]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    Разложение по Кариусу проводят главным образом при определении галогенов (за исключением фтора, реагирующего со стеклом) и серы. Метод используют (без потерь вещества) при определении ртути, мышьяка, селена, бора, теллура и фосфора в органических соединениях. Метод Кариуса применим при анализе летучих металлоорганических соединений, например метил-олова. Несколько особый случай представляет окисление элементного бора, его карбида и нитрида азотной кислотой в присутствии бромида калия [5.994]. При вскрытии трубки галогены могут улетучиваться в виде галогеноводородов или свободных элементов вместе с выходящими газами. Потери галогенов можно избежать, если в трубку перед запаиванием добавить некоторое количество нитрата серебра. При этом галогениды осаждаются в виде солей серебра. В другом способе вещество помещают в трубку в маленькой серебряной лодочке, которая растворяется при окислении [5.995]. При определении иода в органических веществах вместо нитрата серебра вводят нитрат ртути [5.996]. Следует иметь в виду, что титрованию хлорид- и бромид-ионов раствором нитрата серебра мешают ионы ртути. [c.201]


    Трудности должны встретиться при анализе соединений, содержащих бор, фосфор, кремний и некоторые другие элементы, образующие трудновосстанавливаемые оксиды. Ряд публикаций посвящен определению кислорода в элементоорганических соединениях, содержащих бор [227], фтор [222, 228—232], фосфор [222, 225, 233, 234], ртуть [235, 236], щелочные и щелочноземельные металлы [237], другие металлы [222, 238]. [c.138]

    Метод газовой хроматографии, применяемый для анализа газов и паров, может быть использован для разделения летучих неорганических вешеств, а также продуктов, образующих при разложении газообразные соединения. Так, с помощью газовой хроматографии некоторые исследователи определяли гидриды бора - продукты разложения силицида и германида магния фосфорной кислотой гидриды кремния и германия , углерод в сталях карбонаты в горных породах . [c.86]

    Отгонка. В этом методе определяемая примесь или, наоборот, основное вещество переводится в летучее химическое соединение и отгоняется. Для некоторых элементов метод оказывается весьма селективным. Так, мышьяк часто выделяется в виде мышьяковистого водорода, бор — борноэтилового эфира и т. п. Посколы у метод связан с применением химических реактивов, требуется поправка на холостой опыт, а потому, он не применим для отделения наиболее распространенных элементов. При анализе германия и кремния следует отгонять летучие соединения основного вещества, а именно кремний в виде тетрафторида, а германий в форме тетрахло-рида. [c.81]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Разделение и анализ неорганических соединений методом газовой хроматографии получили значительно меньшее развитие, чем органических, вследствие малой летучести многих неорганических соединений и трудности выбора соответствующих насадочных материалов для колонки. Кауфман и другие [93 ] разделили некоторые гидриды бора на колонке с парафиновым маслом, нанесенным на целит, при комнатной температуре. Перманентные неорганические газы лучше всего разделяются методом газо-адсорбционной хроматографии. Кириакос и Бурд [107] полностью разделили смесь, состоящую из водорода, кислорода, азота, метана и окиси углерода, на колонке длиной 4,9 м, содержащей молекулярные сита Линде 5А с крупностью зерен 30—60 меш, которые перед применением активировалось при 350° С в вакууме. На рис. ХУП1-3 показано превосходное разделение, полученное для указанной смеси газов. Шульчевский и Хигучи [165 ] показали, что силикагель при температурах смеси сухого льда и ацетона также может применяться для разделения кислорода и азота. Грин и другие [64] полностью разделили водород, окись и дву- [c.402]

    Некоторые природные соедпне-ния бора не разлагаются серной кислотой. Для анализа таких соединений пользуются реакцией образования )торида бора сухое испытуемое вещество смешивают с четырьмя частями 1 Н304 и одной частью СаРг. Смесь помещают в ушко платиновой проволоки и вносят в бесцветное пламя, которое окрашивается в зеленый цвет вследствие образования летучего фторида бора ВРз по реакциям  [c.43]

    Для предотвращения контакта пробы с воздухом (например, при анализе некоторых металлоорганических соединений) предложена система, состоящая из стеклянной кюветы емкостью 50 мл с двумя отводами, продуваемой сухим азотом. После ввода иглы шприца в кювету через резиновую пробку перед набором продукта шприц продувают азотом. ЭЬо гарантирует сохранность пробы до момента ввода ее в испаритель хроматографа. При перемещении шприца к хроматографу игла остается погруженной в эластичную пробку, что исключает контакт продукта с воздухом на конце иглы. Пробу вводят при одновременном прокалывании пробки и мембраны узла ввода прибора [9]. Аналогичным приемом была достигнута герметизация иглы шприца при вводе в хроматограф жидких алкилированных продуктов бора [12], алюминия и галлия [131, метил-р-цианэтилдихлорсил ана [14]. Отбор проб триэтилбора и трипропилбора также проводили в инертной атмосфере или в токе инертного газа [151. [c.56]

    При анализе реакционноспособных соединений нашел применение метод внутренней нормализации. Так, расчет по площадям пиков без введения калибровочных коэффициентов использовали при анализе метил-р-циан-зтилдихлорсилана [77], алкилированных продуктов бора [78] и трихлорида бора [79]. Исследована возможность расчета содержания малых концентраций легко гидролизуемых метил- и фенилхлорсиланов методом внутренней нормализации без введения калибровочных коэффициентов, определена ошибка и установлены пределы применения указанного метода [80]. Показано, что при анализе микропримесей метилтрихлорсилана в диметилдихлорсилане до 0,75% систематическая абсолютная погрешность, связанная с неучетом коэффициентов, не превышает 0,1%, а это значит, что при анализе товарных кремнийорганических мономеров, содержащих 98—99% основного продукта, концентрации примесей можно рассчитывать с достаточной точностью методом внутренней нормализации без учета поправочных коэффициентов. Некоторые авторы при анализе реакционноспособных соединений метод внутренней нормализации используют с введением поправочного коэффициента. [c.119]

    В некоторых исследованиях высказывалось предположение о существовании двух соединений бора с углеродом, которым приписывались формулы В4С и ВцС. Однако Г. С. Жданов и Н. Г. Севастьянов [160] методом рентгеногрлфического анализа установили существование только одного карбида бора, отвечающего формуле В4С, который имеет ромбоэдрическую структуру с 12 атомами бора и 3 атомами углерода в элементарной ячейке. И. Л. Загянскому, Г. В. Самсонову и Н. В. Поповой удалось получить крупные монокристаллы карбида бора состава В4С, и провести соответствующие кристаллографические и рентгенографические измерения на чистом препарате карбида [161]. [c.206]

    Так же можно определять углеводы со свободными альдегидными или кетонными группами. Некоторые соединения, такие, как хлорангидриды кислот, которые содержат карбонильную группу, но не поддаются определению обычными методами, применяемыми для анализа карбонильных групп, также восстанавливаются борогидри-дами щелочных металлов (примечание 1). Однако точная стехиометрия реакции восстановления галогенангидридов кислот боро-гидридами требует еще дальнейшего исследования. [c.524]

    Холостой опыт. Грязная посуда является основным источником погрешностей анализа. Тигли могут содержать остатки растворов или сплавов от предыдущих анализов. Кварц содержит примеси алюминия, железа, магния, натрия, титана и сурьмы. Соединения некоторых элементов выщелачиваются из стекла оксиды кремния и натрия, мышьяк, бор, медь, железо, алюминий, фтор, свинец, цинк. При выпаривании досуха фтороводородной или фосфорной кислот в платиновых сосудах растворяется 10-20 мкг платршы, при выпаривании концентрированной хлороводородной кислоты — 30-80 мкг платины. [c.862]

    Анализ порошков по сравнению с анализом сплавов осложнен некоторыми обстоятельствами, влияющими на точность и воспроизводимость получаемых результатов. С одной стороны, это процессы испарения электродов, которые ведут к фракционированию пробы и появлению линий отдельных элементов в различный период времени после зажигания дуги. С другой стороны, при. высокой температуре в угольном электроде возможны побочные реакции, ведущие к нежелательным явлениям, таким, как разбрызгивание (М2СОзMgO-Ь СОа), восстановление солей (ВаЗО + - -4С- ВаЗ + 4С0), рвязывание некоторых элементов в виде слаболетучих соединений (например, карбидов бора, молибдена, вольфрама и др.). [c.369]

    Анализ данных, полученных при оценке влияния базовых масел, присадок и ингибиторов коррозии на наводороживание при трении и водородный износ по комплексу методов, позволяет следующим образом объяснить полученные результаты. При испытании на машине трения СМЦ-2 базовых масел, обладающих низким уровнем смазочньк свойств и характеризуемых высоким износом, максимум температуры и механических напряжений локализуется в плоскости контакта поверхностей трения, в связи с чем выделяющийся водород не диффундирует в металл, что и фиксируется методом анодного растворения. При введении в базовые масла эффективных противоизносных присадок, обладающих высоким уровнем смазочного действия и способностью образовывать прочные трибохимические пленки, максимум температуры и механических напряжений при жестких режимах трения локализуется на некоторой глубине от поверхности трения. Создаваемый при этом градиент температуры и механических напряжений обусловливает интенсивную диффузию выделяющегося при трении водорода в металл, а промоторами наводороживания могут являться соединения серы, фосфора и других элементов, содержащиеся в противоизносных присадках и выделяющиеся при трибодеструкции присадок в зоне трения. Отсутствие остаточного наводороживания поверхностей трения при испытании на машине трения СМЦ-2 присадки ДФБ, по всей верс ятности, обусловлено наличием в составе присадки бора, который обладает минимальной способностью стимулировать наводороживание стали /см.рис. 2/, что в сочетании с высокими противоизносными свойствами обусловливает высокую эффективность присадки ДФБ в условиях коррозионно-механического и водородного износа. [c.56]

    Гетерополикомплексами (ГПК) называют группу соединений, состояш их из малого центрального атома, чаще всего Р, 51 или других, и координированных ионов, способных к полимеризации. Для фотометрического анализа наиболее важны ГПК, содержащие в качестве координированных групп полиионы молибдата. Центральным атомом окрашенных ГПК могут быть фосфор, кремний, мышьяк, а также бор, германий и некоторые другие 28—30]. Для определения мышьяка, германия и т. п. имеется немало других более чувствительных и более избирательных методов однако для определения фосфора и кремния образование их ГПК имеет чрезвычайно важное значение. Поэтому ниже главное внимание уделяется этим соединениям. [c.258]

    Для удаления некоторых компонентов анализируемой смеси используются и комплексные соединения, которые в ряде случаев являются достаточно прочными. Так, например, при анализе смесей, содержащих B lg, СО, Oj, H l, O I2 и Si l4, при использовании полярной неподвижной фазы (динонилфталата) образуется химический комплекс с наиболее реакционноспособным компонентом — хлористым бором, а остальные компоненты разделяются на колонке с динонилфталатом [62]. По-видимому, органические соединения никеля, меди II других металлов также могут быть успешно использованы для селективного поглощения аминов и некоторых других азотсодержащих соединений, а не только для их разделения [63.  [c.82]

    Отгонка летучих химических соединений. Этот метод основан на переведении основного компонента пробы в летучее соединение и его отгонке после чего примеси остаются в остатке. На этой схеме основаны некоторые способы концентрирования примесей в германии [36, 43], который в виде тетрахлорида отгоняется, а примеси (20 и более) остаются в дистилляционном остатке для спектрального анализа. Чувствительность определения - 20 элементов составляет 10 —Ю- %. Подобным способом определяются примеси в хлориде галлия, в хлориде олова и др. При концентрировании примесей в кремнии и в его соединениях кремний удаляют в виде 31р4 43], а примеси концентрируются на угольном порошке для последующего спектрального анализа при химико-спектральном анализе бора его отгоняют в виде борнометилового эфира [43] или в виде ВР.ч 45], в последнем случае примеси марганца, молибдена и вольфрама концентрируют на хлориде серебра. [c.177]

    При подборе литературы больше всего приходится пользоваться предметным указателем. В предметный указатель РЖХим входят в алфавитном порядке названия химических элементов (Алюминий Бор Кремний и т. д.), классов химических соединений (Альдегиды Амиды Кетоны Углеводы и т. п.) минералы (Бийетит Кальцит и др.) фирменные названия продуктов (Дюпональ МЕ Перлон) названия катализаторов, в том числе и фирменные названия физико-химических, свойств веществ (Вязкость Электропроводность и пр.) физико-химические константы веществ (Плотность Температура и пр.) химические и физические понятия (Давление пара Изомерия и др.) методы анализа (Колориметрия Полярография) различные физико-химические, биохимические и технологические процессы (Адгезия Испарение Конденсация Брожение Обмен веществ Ректификация Центрифугирование и пр.) химические реакции, в том числе именные (Галогенирование Нитрование Зандмейера реакция) название оборудования (Насосы вакуумные Аппараты выпарные Сушилки). Законы размещены обычно по их названиям или по фамилиям авторов (Бера закон Рауля закон) теории и правила также часто размещены по фамилиям авторов (Альдера правило Марковникова правило Кирквуда теория). Под заголовками Бактерии, Водоросли, Грибы, Животные, Моллюски, Насекомые, Растения, Рыбы, Черви помещены также латинские названия микроорганизмов, животных и растений. Наконец, в предметный указатель включены сведения об индивидуальных химических веществах неустановленного строения, но имеющих название, а также о некоторых витаминах, токоферолах и каротинах. [c.38]

    Бор переводят в комплекс Вр4 действием фтористоводородной кислоты или фторида аммония в кислой среде. При действии на полученное соединение основным красителем получают окрашенное соединение типа К[Вр4] (где Н — катион органического красителя). Такие соединения хорошо экстрагируются инертными органическими растворителями, в то время как сам органический краситель не экстрагируется. Таким образом, метод является достаточно специфичным, хотя присутствие некоторых ионов мешает определению [39]. Эта реакция была предложена Н. С. Полуэкто-вым с сотрудниками [40] и применена для анализа сталей А. К. Бабко и П. В. Марченко [41]. [c.62]

    И ОКСИДОМ свинца, что делает осуществимым его определение совместно с углеродом, водородом и фтором во фторорганических соединениях и в некоторых трудносжигаемых веществах, содержащих, например, группу OsPFe. Оксид бора частично удерживает осмий, что не позволяет определять С, Н, Os в борсодержащих веществах. При анализе веществ, содержащих азот следует учитывать, что реагент, поглощающий оксиды азота удерживает OSO4 и при последующих опытах лишь медленно отдает его. Поэтому оксид осмия (Vni) нужно вымораживать из газов сожжения до их поступления в аппарат для поглощения оксидов азота. [c.97]

    Метод применим для анализа твердых, жидких и газообразных соединений, в том числе и для перфторированных, содержащих любые гетероэлементы, кроме щелочных и щелочноземельных металлов и таллия, образующих трудногидролизуемые фториды, а также кроме рутения и осмия. Оксид рутения (IV) поглощается MgO, но при пирогидролизе можно опасаться образования летучего RUO4 и перехода его в гидролизах. Окоид осмия(VIII) оксидом магния не задерживается и в некоторых случаях может быть определен одновременно с С, Н и F. Однако не исключено, что в присутствии в веществе некоторых других гетероэлементов, например, бора, часть осмия останется в слое MgO и, выделяясь при пирогидролизе в конденсат, может мешать определению фтора. Мешающее действие рутения и осмия при определении фтора с помощью пирогидролиза Mgp2 не исследовано. [c.111]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]

    В табл. 2 приведены данные о некоторых методах анализа, при которых применяют реактив Фишера. Все эти методы основаны на количественных реакциях, при которых вода либо выделяется, либо поглощается. При рассмотрении табл. 2 можно заметить, что эти методы имеют между собой много общего. Так, например, раствор трехфтористого бора в уксусной кислоте применяется в качестве реактива для количественного определения ацеталей, спиртов, аминоспиртов ангидридов, нитрилов, ортоэфиров и диалкилперекисей. Соединения, имеющие чисто ароматический характер, вступают только частично в реакции этерифика-ции. Другие реакции конденсации являются применимыми почти для всех типов соединений, хотя часто проявляется стерический фактор, который сказывается, например, в трудности ацетилиро-вания вторичных диариламинов и в том, что реакция камфоры й камфарной кислоты протекает не до конца. [c.27]

    В некоторых комплексах кобальта(III), как установлено рентгеноструктурным анализом [39, 42, 470], имеются связи сандвичевого типа. Исследование спектров ядерного квадрупольного резонанса Со [115] показало, что в (1,2-С2ВдНц)2Со связи углерод—металл по существу идентичны связям бор—металл в соответствии с ранее упомянутыми данными по мессбауэровским спектрам дикарболлильных соединений железа(III). [c.225]

    Реакции дегалогенирования, кроме упомянутых полиэдрических карборанов, дают менее стабильные карборановые соединения некоторых из них были идентифицированы как алкильные производные 2-карба-ну о-гексаборана(9) СВ5Н9. Так как многие из этих продуктов при нагревании превращаются в клозо-карбораны, большие количества последних можно получить простым нагреванием реакционной смеси (до 150—200°С), приготовленной для дегалогенирования [184, 185]. Масс-спектральный анализ указывает на присутствие многочисленных неидентифицированных карборановых соединений, содержащих до семи атомов бора. [c.47]


Библиография для Анализ некоторых соединений бора: [c.354]   
Смотреть страницы где упоминается термин Анализ некоторых соединений бора: [c.200]    [c.402]    [c.73]    [c.44]    [c.69]    [c.447]    [c.609]    [c.95]    [c.74]    [c.91]    [c.25]    [c.380]    [c.47]   
Смотреть главы в:

Анализ бора и его неорганических соединений -> Анализ некоторых соединений бора




ПОИСК





Смотрите так же термины и статьи:

Анализ бора

Некоторые из 800000 соединений



© 2025 chem21.info Реклама на сайте