Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан и его сплавы химический состав

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Та блица 111,31. Химический состав титановых сплавов (титан — основа) [c.337]

    Химический состав титановых сплавов определен ГОСТ 19807—74. Титан и титановые сплавы, обрабатываемые давлением. [c.184]

    Титан и его сплавы широко применяются в качестве конструкционных материалов для изготовления аппаратов химических производств " Отечественной промышленностью выпускаются титановые сплавы в широком ассортименте для химического машиностроения предназначаются в первую очередь коррозионностойкий технически чистый титан ВТ1, а также сплавы титана с алюминием и добавками других легирующих элементов, например сплав ОТВ табл. 24 представлены химический состав, физические и механические свойства сплавов титана и сортамент полуфабрикатов из них . [c.62]

    Коррозионная стойкость титана и его сплавов. Чистый титан относится к химически активным металлам. Его высокая коррозионная стойкость в ряде агрессивных сред объясняется образованием поверхностной защитной пленки, состав, которой зависит от того, в какой среде и при каких условиях она образуется. [c.36]

    Гегнером и Вильсоном [55] непосредственно в производственных условиях было проведено исследование коррозионной стойкости титана и некоторых других металлов в химических средах, часто встречающихся в технологических процессах заводов хлорнощелочной группы. Химический состав исследованных сплавов приведен в табл. 17 титан, цирконий, тантал и алюминий были технической чистоты. Испытания проводились непосредственно в химических аппаратах, сосудах, трубах и на другом оборудовании. Результаты испытаний приведены в табл. 18 и 19 (ввиду того, что они взяты из одной работы, номера испытаний идут на этих таблицах последовательно). [c.32]

    В этой группе сплавов наибольшее распространение получили сплавы алюминия с марганцем в количестве 1—1,6% Мп (сплавы марки АМц) и сплавы алюминия с магнием в количестве 0,5—7% Mg (сплавы марки АМг— так называемые магналии). Примеси железа и кремния ухудушают свойства сплавов, поэтому содержание их допускается не более 0,5—0,7%. Магналии склонны к образованию крупного зерна, что устраняют модифицированием сплава титаном, ванадием, цирконием. Химический состав и механические свойства алюминие-вомарганцевистых и алюминиевомагниевых сплавов приведен в табл. 11.2. [c.48]

    Исследовалась коррозионная стойкость следующих титановых сплавов ВТ1 (технический титан) ВТ5 ВТЗ ВТЗ-1 и иодидного титана. Химический состав этих сплавов приведен в табл. 1 предыдущей статьи. Термическая обработка, ковка и прокатка этих сплавов соответствовали инструкциям ВИЛМ. [c.164]


    С целью выявления влияния на кинетику собирательной рекристаллизации отдельных легирующих элементов была изучена собирательная рекристаллизация чистого никеля, бинарной системы нихро ма, нихрома, легированного алюминием и титаном. Химический состав исследованных металлов и сплавов приведен в табл. 26. [c.124]

    Направление научных исследований добыча и плавка, получение и очистка металлов РЬ, Sn, Sb, Zn, Mg, Ti, Zr, Al, Ni, o, Au, Ag, Pt, U и их сплавов химические вещества, в состав которых входят свинец, титан, цирконий, серебро, золото, платина химические соединения для керамической промышленности и огнетушения полиэтиленовые капсулы химические соединения, используемые при добыче и дальнейшей обработке нефти краски и лаки химические вещества для аккумуляторных батарей. [c.159]

    Химический состав серийных сплавов титана приведен в табл. 5, а их механические свойства в табл. 6. Из последней таблицы видно, что титан и его сплавы при малом удельном весе обладают высокой прочностью и достаточно хорошей пластичностью. , , , г [c.15]

    Титан и титановые сплавы, обрабатываемые давлением, являются перспективными материалами для химического оборудования, laK как обладают высокими физико-механическими свойствами, коррозионной стойкостью и технологичностью. В химическом машиностроении применяют технически чистый титан ВТ 1-0, а также высокопрочные низколеигрированные титановые сплавы, химический состав которых приведен в табл. 67, а физико-механические свойства — в табл. 68. [c.100]

    В отечественной практике применяется коррозионностойкий сплав марки ХН40МДТЮ (ЭП543) аустенитного класса на железохромоникелевой основе с дополнительным легированием молибденом и медью для повышения коррозионной стойкости, а также титаном и алюминием, вызывающими упрочнение за счет процессов дисперсионного твердения [2.35]. Сплав имеет следующий химический состав, % (мае.) С < 0,04 81 < 0,8 Мп < 0,8 Сг 14—17 N 39—42 Мо 4,5—6,0 Т 2,5—3,2 А1 0,7—1,2 Си 2,7—3,3 3 < 0,020 Р < 0,035. В прутках диаметром 50— 190 мм сплав после закалки с 1050—1100 °С, охлаждения на воз- [c.162]

    Характер изменений в зоне температурного влияния выражается весьма индивидуальными показателями для различных сплавов. В проведенных институтом исследованиях изменений металла у кромки реза стали Х18Н10Т толщиной 20 мм был проведен послойный локально-спектральный анализ (рис. 1). показавший, что у кромки реза изменяется химический состав металла на глубине в несколько десятых миллиметра. Характер изменений и их распространение в металле зависят от условий резки. Так, при резке кислородно-плазменной дутой, как и при кислородно-флюсовой резке, сохраняется общая тенденция к обеднению кромки хромом, титаном, марганцем, кремнием и обогащению ее никелем, что можно объяснить различной степенью их сродства к кислороду по сравнению с железом [7]. Резка в чистом азоте сопровождается менее четкими изменениями химического состава по содержанию хрома, кремния и никеля. Отсутствие закономерности в характере измене- [c.86]

    В процессе хлорирования стирола в среде метилового спирта при температуре 40—50° С титан и его сплавы оказались неустойчивы. Сообщается [61], что титан наряду с хастел-лоегл С (химический состав его см. в табл. 17) не корродирует в различных установках дистилляции таллового масла в условиях воздействия жирных и смоляных кислот при температуре до 270° С. [c.40]

    Исследуя причины плохой шлифуемости жаропрочных сплавов, было высказано предположение [4] о возможном химическом взаимодействии материала шлифовального круга со шлифуемым жаропрочным сплавом. В состав сплава входит титан, который при высоких температурах, как было указано, весьма активен и в зоне контакта с абразивным кругом вступает с ним в химические соединения, образуя Т1С, ИЗ , Т1312 и Т151з. [c.16]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]


    Коррозия сварных швов титана была обнаружена в агрессивных средах — сильных окислителях азотной кислоте, двуокиси хлора, уксусной кислоте с окислителем, серной кислоте с двуокисью титана, хромовой кислоте с добавкой плавиковой, электролите никелирования на основе хлорида никеля [372]. Описывается случай выхода из строя трубы диаметром 52 мм из-за коррозии сварного шва через 150 суток эксплуатации. Труба была изготовлена из листа методом продольной сварки и использовалась для транспортировки 99,5%-ной HNO3 при 80°С. В зоне термического влияния шва трубы были обнаружены короткие пластинки -фазы, в самом шве было гораздо больше -фазы в пластинчатой форме. Предполагается, что причина коррозии сварных швов заключается в повышенном содержании в технически чистом титане железа и никеля, которые являются стабилизаторами -фазы. Очевидно, неизбежный для шва и околошовной зоны цикл нагрев — охлаждение привел к изменению количества, размеров и распределения частиц -фазы. Еслп -фазы мало, она тонко измельчена и равномерно распределена, то титан подвергался слабой общей коррозии (0,15 мм/год). Если же количество -фазы увеличивается, то развивается избирательная коррозия по -фазе, так как она содержит гораздо больше железа и хуже пассивируется. Коррозия особенно интенсивна в пределах самого шва. Опыгы со сварными образцами титана, содержащими различное количество железа и никеля (от 0,01 до 0,11%), подтвердили это предположение. Поэтому для сварных конструкций, работающих в подобных условиях, необходимо применять титан, в котором суммарное содержание железа, хрома и никеля не превышает 0,05%. Контролировать с такой же точностью состав присадочного прутка нет необходимости, так как избирательная коррозия зависела только от состава основного листа. Это же относится и к сплаву Ti — 0,2% Pd. Сварные соединения сплава Ti — 32% Мо, одного из наиболее перспективных для химической промышленности, при испытаниях в кипящей 21%-ной НС1 по скорости коррозии не отличались от основного металла [373]. [c.117]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]


Смотреть страницы где упоминается термин Титан и его сплавы химический состав: [c.52]    [c.120]    [c.126]    [c.41]    [c.120]    [c.686]    [c.140]    [c.220]    [c.74]    [c.474]   
Морская коррозия (1983) -- [ c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы титана

Химический состав сплавов

Химический состав сплавов состав сплавов



© 2025 chem21.info Реклама на сайте