Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа титана

    Скорость каталитического разложения пероксида водорода. В данном задании предлагается большой группе студентов сравнить каталитическую активность различных веществ в реакции разложения пероксида водо рода (3%-й раствор), например соединений марганца М.пОц , Мп(0Н)4, Мп(0Н)2, Мп2+, МпОг и МпО, или соединений хрома, железа,, титана, ванадия. [c.312]


    К сухому остатку приливают соляную кислоту и нагревают до полного растворения безводных сернокислых солей. Полученный раствор содержит сернокислые и хлористые соли всех металлов, входивших в состав силиката. В случае необходимости этот раствор можно использовать для определения суммы полуторных окислов, железа, титана, кальция и магния обычными методами, описанными выше, а в фильтрате после отделения магния определить щелочные металлы. [c.470]

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним в периодической системе (подгрупп железа, титана и хрома), образуют металлические твердые растворы. По мере увеличения различий в электронном строении взаимодействующих металлов возможность образования твердых растворов уменьшается [c.438]

    Кафедры аналитической химии многих вузов, по просьбе авторов, сообщили свои пожелания по указанным вопросам. Общее мнение сводится к тому, что в учебнике должны найти отражение современные направления развития аналитической химии. Многие кафедры в некоторой степени разрешают на практике трудную проблему модернизации преподавания общего курса количественного анализа без существенного увеличения объема курса. В ряде вузов дается характеристика не только давно известных и хорошо зарекомендовавших себя методов, как колориметрия, полярография и др., но и сравнительно новых методов, как комплексонометрия, кулонометрия, кинетические методы, высокочастотное титрование, радиохимические методы и др. Во многих вузах введены задачи по неводному титрованию, потенциометрическому определению ванадия, колориметрическому определению меди, железа, титана. [c.8]

    Окислы никеля, магния, алюминия, циркония,кальция, железа, титана, хрома, калия и натрия [c.62]

    В настоящее время известны два больших класса стекол с высокой электропроводностью (полупроводниковые). К первому классу относятся бескислородные халькогенидные стекла, состоящие из сульфидов, селепидов и теллуридов фосфора, мышьяка, сурьмы и таллия. Второй класс составляют кислородные стекла, содержащие большие количества окислов ванадия, вольфрама, молибдена, марганца, кобальта, железа, титана. Наилучшимп технологическими свойствами (хорошей химической стойкостью, высокой температуро1 5 размягчения обладают силикатные стекла с окислами железа и титана. [c.327]

    Брикеты для этого нагреваются, до 883°, после чего они содержат 82% боксита и 18% углерода. Затем горячими они поступают в другую печь, где проводится обработка хлором. Каждая загрузка печи перерабатывает 20 г брикетов. В низ печи вдувают горячий воздух, подымая температуру до 860°, затем через верхнее отверстие в теченпе 8—10 часов вводят хлор. Таким образом получается хлористый алюминий чистотой в 94%, остальные 6%—хлориды железа, титана и кремния. [c.333]


    Реферируются статьи по сплавам железа, титана, циркония, редким землям. [c.130]

    Кристаллы хлоридов щелочных металлов или галогенидов серебра имеют состав, точно отвечающий их формуле, — это стехиометрические кристаллы. Но кристаллы целого ряда веществ — особенно полупроводников — характеризуются избытком или недостатком одного из компонентов состав таких нестехиометрических кристаллов заметно отклоняется от химической формулы. К числу нестехиометрических ионных кристаллов относятся, например, оксиды цинка, кобальта, кадмия, железа, титана, меди, сульфиды свинца, серебра, железа и т. д. [c.278]

    При осаждении гидроокиси или фосфорнокислого алюминия осаждаются также трехвалентные железо и титан. Обычно этим путем осаждают сумму окислов алюминия, железа, титана и некоторых других металлов. Затем количественно определяют железо, титан и т.п., а содержание алюминия вычисляют по разности. [c.183]

    Исходя из этих соображений, солянокислый раствор силиката перед колориметрированием железа и титана переводят в азотнокислый. Для этого поступают следующим образом. Из мерной колбы с фильтратом, оставшимся после определения кремниевой кислоты, берут пипеткой 50 мл раствора и осаждают гидроокиси железа, титана и алюминия гидроокисью аммония, как описано при определении суммы полуторных окислов. Осадок промывают несколько раз горячей водой и растворяют на фильтре в 25 мл 2 и. азотной кислоты, собирая раствор в мерную колбу (или мерный цилиндр) емкостью 100 мл. После растворения осадка фильтр промывают несколько раз разбавленной азотной кислотой.  [c.468]

    С помощью периодической системы элементов Д. И. Менделеева определите заряд ядра и число электронов в атомах железа, титана и иода. [c.23]

    Нитридный метод. Галлий с азотом не реагирует даже при очень высокой температуре, с аммиаком же образует нитрид только при 900° С. В то же время щелочные и щелочноземельные металлы, железо, алюминий и другие примеси реагируют с азотом или аммиаком при более низкой температуре. Нитриды меди, цинка и кадмия образуются с трудом и легко разлагаются. Рафинируют галлий аммиаком или смесью аммиака с азотом. Мелкие галлиевые капельки пропускают через вертикальную трубу, нагретую до 800°. Этим самым избегают соприкосновения галлия с горячими стенками сосуда. Цикл очистки повторяют 15 —20 раз. При этом достигается высокая степень очистки от примесей железа, титана, алюминия, в меньшей степени от магния, цинка и т. д. Эти примеси накапливаются в нитридном шлаке и в налете на стенках реакционного сосуда [122]. [c.268]

    Ванадий. Содержание ванадия в земной коре достаточно велико, его массовая доля составляет 0,015 %. Однако руд, богатых ванадием мало, т. е. он является рассеянным элементом. Обычно ванадии сопутствует рудам железа, титана и других металлов. [c.265]

    РУДА, прир. минер, образование с таким содержанием металлов или полезных минералов, к-рое обеспечивает экономич. целесообразность их извлечения. Кроме Р. металлов (железа, титана, меди, свинца и др.) имеются баритовые, графитовые, асбестовые, корундовые, фосфатные и др. подобные Р., относящиеся к неметаллическим полезным ископаемым. Из Р. извлекают и используют в народном хозяйстве более 80 хим. элементов. [c.284]

    Бокситы АШз-пН 0 — минералы, содержащие гидроксид алюминия и примеси (соединения железа, титана). В зависимости от содержания железа Б. имеют различную окраску, обычно красную или серую. Используют для промышленного получения алюминия и его соединений. [c.27]

    По мере развития химической промышленности расширяется ассортимент хлорпродуктов, разрабатываются способы получения и организуется производство большого числа неорганических и органических хлорсодержащих веществ гипохлоритов кальция, натрия и лития, соляной кислоты, хлоратов и перхлоратов, хлоридов алюминия, цинка, железа, титана, кремния, фосфора и других элементов, используемых в качестве катализаторов в химических синтезах, как полупродукты в производстве ряда химических товаров, как коагулянты при очистке питьевой воды и канализационных стоков. -  [c.9]

    Имеется ряд эффективных способов очистки отходящих газов с использованием отходов (шламов) различных производств. Например, очистку газов от диоксида серы ведут обработкой газового потока суспензией красного шлама (отход процесса Байера), состоящего из окислов кремния, железа, титана, алюминия и натрия. Степень очистки газа от диоксида серы > 90%. [c.249]

    Массовое содержание примесей, , не более золы меди железа титана [c.164]

    Определение катионов металлов комплексометрическим методом может быть прямым и обратным с применением соответствующих индикаторов и при pH среды, указанной для каждого отдельного определения катионов в исследуемом растворе. Комплексометрическим методом определяют катионы железа, титана, свинца, цинка, кадмия, меди, никеля, марганца, кобальта и алюминия. Разрушение полимера для определения всех указанных металлов проводится одним способом смесью азотной и хлорной кислот в соотношении 5 3 в колбе Кьельдаля. [c.82]


    Титаномагпетнты — это комплексные руды железа, титана и ванадия. [c.20]

    Намагниченность горных сред обычно коррелирует с содержанием в ней ионов железа, титана, марганца, магния, алюминия, хрома и ванадия. Эти ионы — составная часть широко распространенных минералов. К ним относятся титаномагнетиты, гемати-тоильмениты,гидроокислы железа и пирротины. [c.140]

    Азосоединения легко 1Грнсоединяют водород ири действии амальгамы натрия или рассчитанного количества цинковой пыли в растворе гидроксида натрия, а также алюмогидрида лития в присутствии галогенидов меди, железа, титана, молибдена, сурьмы. Действие более сильных восстановителей (HI, Sn l2, NaHSOs), или каталитическое гидрирование приводят к полному гидрогенолизу связи N = N с образованием двух молекул анилина. [c.421]

    Соосаждением называют увеличение веществ осадком в момент его образования. Таким образом, соосаждение это распределение концентрируемого компонента между твердой и жидкой фазами (Т—Ж). Малорастворимые соединения с которыми соосаждаются концентрируемые вещества, называют коллекторами. Коллекторы могут быть неорганическими (карбонат кальция, сульфиды тяжелых металлов, гидроксиды алюминия, железа, титана и др.) и органическими (8-оксихинолин, 2,4-динитроанилин, нафталин, оксифенилфлуорон и др.). [c.313]

    На основании этих экспериментальных данных заключают исследованные образцы представляют собой одно и то же твердое вещество, а именно такое-то соединение переменного состава. Нетрудно заметить, что подобное заключение имеет только мнимую связь с экспериментом. На самом же деле оно предопределено представлением о соединениях переменного состава. Действительно, ведь мы заранее предполагаем, что все образцы однотипного состава и строения, обладающие близкими свойствами, являются образцами одного и того же вещества, например карбида тантала, оксидов железа, титана и т. д. Так, если мы можем выразить состав ряда образцов оксида титана формулой ТЮ1,д 2,о и рентгеновское исследование обнаруживает одинаковость их структуры, то даже без исследования свойств данных образцов мы не допускаем сомнений в том, что име м дело с образцами двуокиси титана. Между тем эксперимент в действительности говорит о другом каждый образец исследуемого вещества имеет свой индивидуальный состав, несовпадающее строение и собственные свойства. В вышеуказанных опытах мы устанавливаем отнюдь не идентичность состава, строения и свойств, а сходство, подобие исследуемых образцов. Образцы какого-нибудь вещества представляют индивидуальное химическое соединение только при их полной идентичности. Следовательно, рассматриваемые образцы вовсе не являются образцами одного и того же твердого соединения. Нетрудно заметить, что каждое твердое вещество, которое до настоящего времени считают соединением переменного состава, в действительности является не чем иным, как рядом однотипных соединений постоянного состава, количество которых в каждом ряду чрезвычайно велико, но не бесконечно. [c.170]

    Путем осаждения алюминия оксихинолином можно при определенных условиях одновременно отделить алюминий от многих ионов элементов, в том числе от иопов фтора, фосфора, железа, титана и некоторых других металлов. Крометого, осадок оксихинолината алюминия выделяется в кристаллической форме, что значительно облегчает фильтрование и промывание и уменьшает возможность загрязнения осадка различными примесями. Наконец, определение можно закончить не весовым, а объемным методом (титрованием бромноватокислым калием) и таким образом значительно ускорить анализ. [c.183]

    Подготовка к сплавлению. Определение кремневой кислоты, окислов железа, титана, алюминия, кальция и магния, а также сульфата, ведут из одной общей навески. Для этого отвешивают на часовом стекле 1,0000 г размельченной высушенной пробы. Затем взвешивают на технических весах 6 г безводной соды или углекислого калия-нат-рия (смесь К2СО3 и Na Oj). Небольшое количество взвешенной соды насыпают в платиновый тигель так, чтобы его дно было покрыто тонким слоем соды. Навеску силиката ссыпают теперь с часового стекла в тигель, сметая кисточкой отдельные крупинки силиката, оставшиеся на стекле. Для удаления последних следов порошка стекло споласкивают содой соду насыпают небольшими порциями на стекло, а затем сметают кисточкой в тигель. [c.462]

    В среде безводной уксусной кислоты при использовании в качестве титрантов брома, хромовой кислоты, перманганата калия или трихлорида титана проводят титрование мышьяка, сурьмы, ртути, селена, железа, титана, таллия, бромидов, иодидов, иода и пероксида водорода, а также органических соединений, таких, как резорцин, гидрохинон, бренцкатехин, тетра-хл оргидрохинон, п-хинон, тетрахлорхинон, л-аминофенол или дифениламин. Точку эквивалентности определяют потенциометрическим методом. [c.348]

    N—0МН4 железа, титана, урана и других элементов проис-N0 [c.162]

    Метод основан на восстановленпн солями хрома (II) перрената до четырехвалентного рения. Титрованне проводят при 60—70° С в среде 4 н. серной кислоты в присутствии небольших количеств иодида калия как катализатора. Точку эквивалентности устанавливают с помощью компенсационного потенциометра, применяя в качестве индикаторного электрода платиновую пластинку, а в качестве электрода сравнения — насыщенный каломельный полуэлемент. Определение возможно в присутствии небольших количеств молибдена (Re Mo= 1 1), а также-железа, титана, хрома, ванадия, никеля, кобальта, ниобия и меди. Последние легко отделяются в виде гидроокисей путем осаждения аммиаком или щелочью перед титрованием. [c.389]

    Сорбционные методы. Для очистки от бора, фосфора, мышьяка и т. п. примесей предложено сорбировать их либо из жидкого Ge U, либо из его паров на активированном угле, силикагеле, ионообменных смолах, цеолитах, окислах алюминия, железа, титана, редкоземельных элементов и др. Например, в [100] рекомендуется очищать пары на сложном трехслойном сорбенте слой инертного носителя, пропитанного о-нитроанизолом (для удаления хлоридов фосфора), слой окисленного активированного угля СКТ (для поглощения трихлорида мышьяка) и слой силикагеля A M (для поглощения хлоридов металлов). [c.196]

    В качестве примера можно привести комплексную переработку хибинской апатито-нефелиновой руды. Минерал апатит включает фторапатит Саюр2(Р04)б и хлорапатит СаюС12(Р04)б. Кальций в них частично замещен на стронций, марганец и редкоземельные элементы. Минерал нефелин, является алюмосиликатом Ыа2А1281208. Наряду с этими основными минералами в апатито-нефелиновой руде содержатся другие, являющиеся алюмосиликатами железа, магния, а также оксидами железа, титана и ванадия. Руда делится на две фракции апатитовую и нефелиновую, которые перерабатываются раздельно. [c.513]

    Гидроксихинолин образует с многими металлами (алюминием, железом, титаном, медью, кадмием, цинком, кобальтом, никелем, магнием и др.) нерастворимые осадки гидроксихинолинатов. (Селективность осаждения достигается регулированием pH раствора. Так, полное осаждение гидроксихинолинатов алюминия, железа, титана, меди, магния, свинца достигается при pH 4,4 2,8 4,8 3,3 8,2 и 8,4 соответственно. Поэтому можно, например, осаждать алюминий в присутствии магния, железо — в присутствии свинца и т. д. Другой путь повышения селективности — введение маскирующих веществ. Описанные приемы позволяют определять один металл в присутствии ряда других. [c.431]

    Катализаторами этой реакции являются растворимые в серной кислоте соли ванадия, молибдена железа, титана, то рия и циркония. В качестве аминирующего вещества чаще всего применяют сернокислый гидр-оксиламин, соли гидроксиламиносульфокислот или вещества, которые в концентрированной серной кислоте распадаются с образованием гидроксиламина. [c.283]

    Этим методом трудно получить карбиды строго ностояппого состава. В большинстве случаев они содерлсат несколько заниженное количество углерода. Метод применим для получении карбидов самых разнообразных металлов, напрнмер железа, титана,. молибдена, вольфрама, алю.миния и др. В.место металлов можно брать и их окислы. [c.304]

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним в периодической системе (подгрупп железа, титана и хрома), образуют металлические твердые растворы. По мере увеличения различий в электронном строении взаимодействующих металлов возможность образования твердых растворов уменьшается, а интерметаллических соединений, например типа СозУ, ГезУ, К1зУ, А12У и др., возрастает. [c.590]

    Так, при определении одного и того же элемента (например, кобальт, цинк, железо) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется соотъетствешю органической или неорганической природой объекта. Разложение и перевод в раствор проб силикатов проводят в зависимости от определяющего их состав соотношения MeO/SiOj. Если в составе силиката преобладают оксиды металлов, то пробу растворяют в кислотах, если — оксид кремния, то проводят сплавление или спекание. При определении в силикате содержания железа, титана, алюминия пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов спекают с СаО и a Oj. [c.70]

    Лаки и органодисперсии ХСПЭ легко пигментируются. В табл. 3.5 приведены основные типы используемых пигментог и красителей. Как правило, пигментирование улучшает физико-механические свойства покрытий, их атмосферостойкость. Однако многие из пигментов (оксиды железа, титана, хрома и особенно свинца) вступают в химическое взаимодействие с ХСПЭ, что сказы- [c.161]

    Экстракт сжигают в серной кислоте с перекисью водорода. Двуокись кремния отфильтровывают. В аликвотной части сернокислого раствора определяют германий с фенилфлуороном. В оставшемся растворе осаждают щелочью соли железа, титана, циркония, которые после отделения фильтрацией растворяют в соляной кислоте, и в аликвотных частях раствора определяют металлы соответственно по реакциям с сульфосалициловой кислотой, перекисью водорода и ализариновым красным. В щелочном растворе после отделения гидроокисей аммиаком с нитратом аммония осаждают олово и обнаруживают его с помощью фенилфлуорона в среде с рН=1,0—1,2. В фильтрате после отделения олова обнаруживают медь по реакции с диэтилдитиокарбаматом натрия. [c.113]


Смотреть страницы где упоминается термин Железа титана: [c.46]    [c.148]    [c.332]    [c.158]    [c.109]    [c.14]    [c.208]    [c.345]    [c.398]    [c.165]    [c.345]   
Аналитическая химия урана (0) -- [ c.385 ]




ПОИСК







© 2025 chem21.info Реклама на сайте