Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прокатка

    В химической промышленности широко применяют валковые машины, которые состоят в простейшем случае нз двух цилиндрических валков (рабочие органы машины), совершающих принудительное вращение навстречу один другому (рис. 2.1, а). Такую машину в зависимости от режима и дополнительной оснастки можно использовать для измельчения кусковых материалов (валковая дробилка), прессования или прокатки сыпучих или вальцевания вязких материалов с получением непрерывной плитки или листа. [c.32]


    В зависимости от основных свойств — температуры размягчения, глубины проникания иглы, растяжимости, температуры хрупкости, сцепляемости с каменным материалом (адгезии) и др. — различают нефтяные битумы пяти марок. Битумы первых трех (I—III) применяются в дорожном деле. Битумы марки IV используются главным образом в кровельной промышленности, в гидротехнических сооружениях, для брикетирования угольной мелочи, для смазки шеек прокатных станов, при горячей прокатке металла. Битум марки V находит применение в лакокрасочной промышленности, для изоляционных покрытий трубопроводов, для электроизоляции и т. д. [c.144]

    В результате прокатки, выполнения горячей штамповки и других высокотемпературных операций на поверхности заготовок или готового изделия образуется окалина. За время транспортирования, хранения на металле могут появиться ржавчина и загрязнения. [c.89]

    Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких температурах. Газовая коррозия металлов имеет место при работе многих металлических деталей и аппаратов (металлической арматуры нагревательных печей, двигателей внутреннего сгорания, газовых турбин, аппаратов синтеза аммиака и др.) и при проведении многочисленных процессов обработки металлов при высоких температурах (при нагреве перед прокаткой, ковкой, штамповкой, при термической обработке и др.). Поведение металлов при высоких температурах имеет большое практическое значение и может быть описано с помош,ью двух важных характеристик — жаростойкости и жаропрочности. [c.16]

    Производительность процесса прокатки определяется осевой скоростью выхода металла из валков, которая может быть вычислена по формуле [c.155]

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]


    Ребристые трубы прокатывают из алюминия, меди и их сплавов, из биметаллов, из углеродистых, легированных и высоколегированных марок сталей и специальных сплавов. С разработкой технологии прокатки широкое применение в теплообменной аппаратуре получили алюминиевые ребристые трубы взамен труб из медно-латунных сплавов, а также биметаллические ребристые трубы с применением алюминия. [c.153]

    Эту задачу часто решают, усложняя щетки-кисти . По стандарту 5.1.3 щетки-кисти , как и другие вспомогательные устройства, допустимы только в том случае, если они, сделав свое дело, сразу исчезают. Вот ответ на эту учебную задачу Способ подачи жидкой смазки в очаг деформации при горячей прокатке, отличающийся тем, что, с целью исключения загрязнения окружающей [c.120]

    Клейма располагают на средней линии листа вдоль прокатки. При последующем раскрое листов стремятся сохранить клейма на [c.277]

    Аргонодуговая сварка с последующей аустенизацией позволяет получить сварной шов, приближающийся по пластичности к основному металлу заготовки. Прокатка сварного шва перед термической обработкой выравнивает его толщину с толщиной основного металла заготовки, что снижает напряжение в сварном шве при эксплуатации компенсатора. [c.111]

    Среднечасовая производительность прокатки определяется по формуле [c.155]

    Практически производительность прокатки ограничивается допускаемой скоростью вращения трубы в направляющих, превышение которой вызывает смятие вершин ребер из-за биения трубы. В зависимости от типа и размеров ребристых труб и конструкции направляющих допускаемая частота вращения трубы может меняться в широких пределах, например от 200 до 1000 об/мин. При прокатке тяжелых, длинномерных ребристых труб, а также труб с более тонкими ребрами необходимо снижать частоту вращения трубы. [c.156]

    Прямая лента 1 из рулона подается в клиновой рабочий зазор деформирующей пары, состоящей из приводного полого шпинделя 2 и тарельчатого диска 3, вращение которому передается шпинделем благодаря контакту с прокатываемой лентой. В результате прокатки происходит утонение ленты по высоте, увеличивающееся от основания к вершине, причем слои металла, расположенные у вершины и подверженные в большей степени пла- [c.159]

    Ширина исходной ленты — Яо = 16 мм — определена опытным путем с учетом уширения ее при прокатке. [c.160]

    Железо — серебристый пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты — [c.674]

    Легко деформируется и обрабатывается Легко поддается ковке и прокатке Высокая электро- и теплопроводность Образует прочные сплавы [c.160]

    Наиболее распространенные мелющие тела — шары и стержни. Шары диаметром от 30 до 125 мм обычно изготовляют прокаткой, ковкой или штамповкой из сталей они подвергаются закалке до твердости НВ 400 для шаров диаметром до 80 мм и не менее НВ 300 для шаров диаметром 125 мм. Стержни изготовляют из невязких углеродистых сталей. Износ мелющих тел зависит от свойств измельчаемого материала, степени измельчения и других факторов. В среднем он пропорционален энергозатратам при помоле. Расход стальных шаров составляет примерно 0,09 кг на 1 кВт- ч энергии, затраченной на измельчение. [c.188]

    Фильтровальный патрон изготавливают из листа, полученного прокаткой и спеканием специального порошка титана с содержанием 85—90% частиц размером до 60 мкм пористость листа 38— 43% максимальный размер пор 5—6 мкм прочность на растяжение 3—5 Н-см 2 [420]. [c.372]

    Плакированный дюралюминий получают механотермическим способом, заключающимся в том, что дюралюминиевая заготовка, заливаемая алюминием, подвергается при нагреве прокатке. Толщина плакирующего слоя алюминия составляет с каждой стороны 4—5% от толщины дюралюминиевой сердцевины. Плакированный дюралюминий нельзя подвергать длительной тер- [c.327]

    Задача 7.7. При горячей прокатке надо подавать жидкую смазку в зону соприкосновения металла с вал-камиТ Существует множество систем подачи смазки самотеком, с помощью разного рода щеток и кистей , под напором (т. е. струйками) и т. д. Все эти системы очень плохи смазка поступает в нужные места неравномерно и в недостаточном количестве, большая часть смазки разбрызгивается, загрязняет воздух нужно иметь десять разных режимов смазки — известные способы не обеспечивают такую регулировку. [c.120]

    Увеличение осевой скорости заготовки и соответственно производительности прокатки может быть достигнуто увеличением числа заходов ребер на изделии. Это достигается разворотом валков на больший угол подачи а. Однако эти возможности ограничены, так как с увеличением числа заходов увеличиваются давление металла на валки в момент прокатки, усложняется инструмент и затрудняются условия формообразования высоких и тонких ребер. По опытным данным оптимальное значение угла подачи при прокатке ребристых труб составляет 2—4°. При прокатке высокоребристых труб важное значение имеет выбор технологических смазок и способа их нанесения. Наиболее эффективны смазочно-охлаждающие жидкости в виде водной эмульсии синтетических жиров, например синтетическая смазка ЛЗ-142. Эмульсию подают в зону деформации на валки при помощи насосной установки с расходом от 40 до 100 л/мин. Рабочая температура жидкости от 40 до 70° С. [c.156]


    Дн = 20-820 мм. Трубы бесшовные стальные прецизиопные по 1 ОСТ 9567-75. Имеют повышенную точность после холодного предела и после горячей прокатки, Дн = 25-710 мм. [c.26]

    Методом прокатки получают ребристые трубы двух основных типов а) с высокими и тонкими ребрами и б) с низкими ребрами, выполненными в виде резьбы с шагом 1,5—2,5 мм и углом профиля от 4 до 30°. Коэффициент оребрения у высокоребристых труб достигает 16. У низкоребристых труб этот коэффициент равен 2,5— 4,0. Высокоребристые трубы обычно прокатывают с непрерывным оребрением по всей длине. Для соединения с трубными досками концы прокатанных высокоребристых труб обычно протачивают на токарных станках. [c.153]

    В тех случаях, когда характер наружного дефекта сомнителен или требуется проверить глубину его залегания, послойно снимают металл в месте дефекта. Например, такие дефекты, как риски, волосовинные трещины и закаты, по внешнему виду и характеру расположения (вдоль прокатки) сходны между собой. Для определения вида дефекта нужно в этом месте подрубить зубилом поверхностный слой металла в продольном направлении. Риски, имеющие глубину 0,1—0,3 мм, браковочным признаком не служат. [c.232]

    На лепестках и диске для их приварки к остающимся титановым подкладкам по наружному контуру подгибают кромки шириной, равной половине ширины остающейся подкладки, и высотой, равной ее толщине. Подгибают кромки штам-повкой или прокаткой в фигурных роликах, применяемых при изготовлении сварных карт. Для подгибки кромок на плоских и криволинейных участках заготовки в штампе предусматривают сменные пуансоны и матрицы, выполненные с различными радиусами закруглений. При наличии необходимого кузнечно-прессового оборудования и в случае большой партии изготовляемых деталей кромки в лепестке подгибают по всему контуру детали в штампе за один ход пресса. При футеровке днищ лепестками и диском с отогнутыми кромками под углом 90°, служащими в дальнейшем в качестве компенсаторов, отгибать кромки можно на кромкогибочных прессах или (при отсутствии необходимого кузнечно-прессового оборудования, а также при изготовлении небольшого количества деталей) ручной отгибкой на оправке. В зависимости от толщины титановой заготовки кромки отгибают в холодном или нагретом состоянии. [c.68]

    Существует большое многообразие конструктивных форм оребренных трубных элементов и методов их получения. Наиболее распространенные из них продольное оребрение, выполненное прокаткой, вытяжкой из расплава или сваркой поперечное, выполненное набором ребристых элементов на трубе и дальнейшее их соединение сваркой, пайкой либо деформированием поперечновинтовое, вьшолненное прокаткой или навивкой ленты с различными методами ее крепления на трубе. [c.151]

    Поперечно-винтовая прокатка ребристых элементов труб. Наиболее эффективными по теплоотдаче являются цельнокатаные трубы с поперечными ребрами, технология изготовления которых разработана Всесоюзным научно-исследовательским институтом металлургического машиностроения — ВНИИметмаш. В зависимости от назначения и особенностей технологического процесса станы для прокатки труб выпускаются следующих основных типов для оправочной прокатки труб конечной длины для безоправочной прокатки труб конечной длины для безоправоч-ной прокатки труб практически неограниченной длины из бухты. Станы для оправочной прокатки труб предназначены главным образом для прокатки монометаллических труб длиной до 5 м с оребрением диаметром до 50 мм и обеспечивают прокатку труб с гладкими концами и с пропусками оребрения. Станы для безоправочной прокатки монометаллических ребристых труб аппаратов воздушного охлаждения производят прокатку труб длиной до 8 м, с оребрением диаметрами до 56 и до 84 мм. На станах для прокатки ребристых труб малого диаметра неограниченной длины (из бухты) изготовляют трубы для теплообменной аппаратуры и т. д. В этом случае валки одновременно с вращением обкатываются вокруг заготовки, причем труба перемещается в осевом направлении. По сравнению с ребристыми трубами других конструкций цельнокатаные трубы отличаются 152 [c.152]

Рис. 94. Схема прокатки высокоребристых труб в кольцевых калибрах Рис. 94. <a href="/info/1022066">Схема прокатки</a> высокоребристых труб в кольцевых калибрах
    Прокатка высокоребристых труб производится на трехвалковых станах винтовой прокатки (рис. 94). Исходной заготовкой служат гладкие толстостенные трубы. Прокатка производится тремя приводными валками, расположенными под углом 120° вокруг заготовки. Оси валков наклонены к оси заготовки на не-154 [c.154]

    Внутренний диаметр заготовки выбирают по стандартному сортаменту на 1—2 мм большим по величине, чем внутренний диаметр ребристой трубы. Расчетный диаметр D определяется в большую сторону до ближайшей стандартной величины. Для прокатки биметаллических ребристых труб используются предварительно собранные с небольшим зазором двухслойные заготовки. Перед сборкой заготовки подвергаются очистке и обезжириванию. Алюминиевые трубы-заготовки для прокатки высокоребристых труб должны быть мягкими, в отожженном состоянии. Плотное соединение слоев у биметаллических ребристых труб обеспечивается в результате обжатия при совместной прокатке благодаря использованию инструмента специальной геометрии. Контроль плотности контакта в биметаллической трубе осуществляется по усилию распрессовки стандартного образца. [c.155]

    Спиральное оребрение алюминиевой лентой. В отечественном и зарубежном машиностроении широко применяется технологический процесс изготовления высокоребристых труб (рис. 97) методом навивки и завальцовки алюминиевой ленты, который позволяет получить трубы с коэффициентом оребрения 22—23 и снизить вдвое удельный расход алюминия на метр оребренной трубы по сравнению с методом поперечно-винтовой прокатки. Этот технологический процесс предусматривает предварительную деформацию ленты в спираль с последующей ее завальцовкой в канавке на поверхности трубы. На рис. 98 приводится технологическая схема оребрения трубы данным методом. [c.159]

    Золото —- ярко-желтый блестящий металл. Оно очень ковко н йластичио иутем прокатки из него можно получить листочки толщиной менее 0,0002 мм, а из 1 г золота можно вытянуть проволоку длиной 3,5 км. Золото — прекрасный проводник теплоты и электрического тока, уступающий в этом отношении только серебру и меди. [c.580]

    Характер деформации металла сильно сказывается на его склонности к коррозионному растрескиванию. Так, как правило, глубокая штамповка оказывает более сильное влияние, чем холодная прокатка или гибка. Те виды механической обработки, при которых в верхнем слое металла образуются сжимающие напряжения (проковка, обдувка дробью, обкатка роликами, опе-скоструировапие и др.), уменьшают склонность металла к коррозионному растрескиванию. Эти виды обработки обычно рекомендуются для борьбы с коррозионным растрескиваппем сварных швов. [c.102]

    Если в результате коррозии вдоль грапш , зерен металла образуются бороздки или если бороздки появляются по ватерлинии, то такой вид коррозии иногда называют коррозией бороздками. Иногда коррозия идет вдоль отдельных плоскостей, параллельных поверхности металла такая коррозия называется расслаивающей этот вид коррозии связан с прокаткой металла илн ого штамповкой с вытяжкой. [c.172]


Смотреть страницы где упоминается термин Прокатка: [c.64]    [c.72]    [c.73]    [c.153]    [c.155]    [c.155]    [c.156]    [c.142]    [c.530]    [c.682]    [c.91]    [c.108]    [c.278]    [c.423]    [c.645]    [c.105]    [c.327]   
Технология производства урана (1961) -- [ c.402 , c.407 ]




ПОИСК







© 2025 chem21.info Реклама на сайте