Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гуано

    Гу реев A. A. Применение автомобильных бензинов. М, Химия, 1972, 364 с. [c.97]

    Если электроды расположены в ряду стандартных, электродных потенциалов близко друг к др>гу, как, например, 5и2+, 5гг + н Си+, Си +, то константа равновесия редокси-реакции мало отличается от единицы, и при смеше[1ии раство )ов, содержащих такие редокси-пары, окислительно-восстановительное равновесие смещается не очень заметно. [c.183]


    Было найдено (см., например, работы Луггина), что положение максимума электрокапиллярной кривой оказывается иным, если вместо ртути использовать легкоплавкие сплавы или амальгамы. С наибольшей полнотой этот вопрос был изучен Фрумкиным с сотр. По их данным, потенциал максимума электрокапиллярной кривой галлия составляет —0,69 В, а насыщенной амальгамы индия —0,65 В по водородной шкале. Более того, как было установлено еще Гуи, даже для одного и того же металла — ртути — потенциал максимума электрокапиллярной кривой изменяется в широких пределах в зависимости от состава раствора. [c.250]

    По условию электронейтральности можно написать, что 7м = —< ь. Для того чтобы найти величину <71, как функцию потенциала, необходимо сделать определенные предположения о законе ее изменения с расстоянием от электрода. Гуи и Чапман считают, что ионы можно рассматривать как материальные точки, не имеющие собственного объема, но обладающие определенным зарядом, и что их распределение в поле заряда, равномерно размазанного по поверхности электрода, подчиняется формуле Больцмана (рис. 12.2). Величина /ь определяется при этом суммированием всех избыточных зарядов ионов (положительных при отрицательно заряженной поверхности металла и отрицательных при ее положительном заряде), находящихся в столбе жидкости, перпендикулярном поверхности электрода и имеющем сечение 1 см . [c.264]

    Рнс, 12,2, Строение двойного электрического слоя по Гуи — Чапману молекулярная картина (а) и изменение потенциала с расстоянием от поверхности металла в глубь раствора (6  [c.264]

Рис. 12.3. Сопоставление экспериментальной (/) и теоретической (2) (по Гуи — Чапману) кривых дифференциальной емкости для 0,001 п. NaF Рис. 12.3. Сопоставление экспериментальной (/) и <a href="/info/41399">теоретической</a> (2) (по Гуи — <a href="/info/1078910">Чапману</a>) <a href="/info/304275">кривых дифференциальной</a> емкости для 0,001 п. NaF
    Фактически это понятие было вве сно первоначально Гуи и Чапманом. [c.266]

    В отличие or теории Гуи — Чапмана величина Q2 в выражении [c.268]

    Гу, I-J —скорости прямой и обратной реакций. [c.86]

    Но сумма 2а,.у/гу равна теплоте г-й реакции AH . Подставляя эти соотношения в уравнение ( 11.27), имеем  [c.158]

    Электрокапиллярные явления отражают связь, существующую между поверхностным натяжением и разностью потенциалов на гран1ще двух фаз. Графически эта связь выражается в виде элек-трокапиллярных кривых (э. к. к.). Впервые электрокапиллярные явления были изучены на границе ртути и водных растворов электролитов Липпманом (1875), который использовал для этой цели сконструированный им капиллярный электрометр. В дальнейшем его исследования были продолжены Гуи (1910) и Фрумкиным (1919), а также Батлером, Крюгером, Грэмом, Парсонсом и др. [c.236]


    Дж-м 2. Так, ио Гуи, ири 18° С в 0,005 М МзаЗОл и в чистой воде 0 = 0,4267 Н-м- . В то же время электрокапиллярные кривые, полученные в растворах других электролитов, а также в присутствии большинства органических неионизированных веществ, весьма заметно отличаются по своей форме от параболы. Они менее симметричны, и их максимумы расположены при иных значениях < f и а. [c.237]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Такое расхождение связано с тем, что теория Гуи — Чап-мапа не учитывает собственного объема ионов, которые отождествляются с материальными точками, обладающими только зарядами. В результате этого ничто не препятствует ионам в принятой модели подходить сколь угодно близко к поверхности металла. Расположенная в растворе часть двойного слоя может оказаться локализованной, несмотря на свою диффузность, в очень тонком слое, значительно меньшем радиуса иона. В этом легко убедиться, если, подобно тому как это делалось в теории Дебая — Гюккеля, ввести характеристическую длину /д, определяющую толщину плоского конденсатора, эквивалентного по емкости диффузионному двойному слою. Характеристическую длину можно найти, приравняв правые части уравнений (12.4) и (12.7)  [c.266]

    По уравнению (J2.4) емкость обратно пропорциональна толщине двойного слоя. Возможность с катия д[к(1фузного слоя до размеров меньших, чем радиусы ионов, приводит к повышенн1.тм значениям емкости. Таким образом, теория Гуи—Чапмана, объясняя лучше, чем теория Гельмгольца, электрокинетические явления, оказывается менее удовлетворительной при использовании ее для количественных расчетов емкости двойного слоя. [c.266]

    Теория Гуи—Чапмана оправдывается лучше всего там, где теория Гельмгольца оказывается неприложнмой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем п Гуи — [c.267]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Как уже отмечалось, н полупроводника <, в отличие от металлов имеется два рода носителей заряда отрицательные--электроны и положительные — дырки. Поэтому проводпнкн по ряду свойств похожи на электролиты, где также присутствуют отрицательные и положител( Пые носители электричества — апиопы и катионы. Эта аналогия обнаруживается и и строении двойного электрического слоя, В ре.чультате наложения сил теплового движения и сил взаимодействия (притяжения и отталкивания) с поверхностью полупроводника внутри песо вблизи Гранины раздела устанавливается диффузное распределение зарядов и возникает так называемый объемный заряд. Таким образом, двойной электрический слой на границе раздела включает в себя как бы два слоя Гуи — один в раство- [c.274]

    Исследования химии нефти создают фундаменталь-гую базу для рацпоизльного применения ценного природного сырья. [c.4]

    С целью изомеризации циклопентановых углеводородов в циклогексановые, исследуемый бензин в количестве 150 мл (110,65 г) помещался в эрленмейеровскую литровую колбу, снабженную теми же приспособлениями, как это нами описано выше. В эту же колбу вводился активированный гу.м-брнн н количестве 20% от веса бензина. Реакционная смесь нагревалась при непрерывном перемешивании в течение 24 ч. Температура реакции колебалась в пределах 90—120°. По [c.227]



Смотреть страницы где упоминается термин Гуано: [c.21]    [c.16]    [c.54]    [c.10]    [c.25]    [c.222]    [c.439]    [c.581]    [c.112]    [c.167]    [c.107]    [c.134]    [c.166]    [c.99]    [c.189]    [c.260]    [c.263]    [c.264]    [c.265]    [c.269]    [c.269]    [c.275]    [c.275]    [c.328]    [c.190]    [c.64]    [c.168]    [c.175]    [c.209]    [c.283]   
Химический энциклопедический словарь (1983) -- [ c.355 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.355 ]

Курс неорганической химии (1963) -- [ c.676 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.596 , c.675 ]

История химических промыслов и химической промышленности России Том 3 (1951) -- [ c.138 , c.146 , c.178 , c.186 , c.264 , c.266 , c.268 , c.270 ]

Курс неорганической химии (1972) -- [ c.606 ]

Курс органической химии _1966 (1966) -- [ c.301 ]

Жизнь зеленого растения (1983) -- [ c.498 ]




ПОИСК







© 2025 chem21.info Реклама на сайте