Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Максимум электрокапиллярный

    По Оствальду, любое из этих значений можно было бы с тем же правом, как и величину —0,20 В, полученную для ртути в растворах поверхностно-инактивных веществ, принять за абсолютный нуль электродного потенциала и иметь множество совершенно различных абсолютных шкал потенциалов. Таким образом, потенциалы максимумов электрокапиллярных кривых не могут служить основанием для создания абсолютной шкалы потенциалов. В то же время эти потенциалы, названные Фрумкиным потенциалами нулевого заряда или нулевыми точками металлов, имеют принципиальное значение для электрохимии. На их основе Фрумкину удалось дать одно из наиболее удачных решений проблемы Вольта, о чем уже упоминалось ранее. Антропов показал важную роль, которую играют потенциалы нулевого заряда в электрохимической кинетике, и дал первые кинетические уравнения, в которых наряду с отклонением потенциала от равновесного фигурирует также отклонение его от нулевой точки электродного металла. [c.250]


    В поверхностно-неактивном электролите при потенциале максимума электрокапиллярной кривой gi — O.a е =.о = ел/. [c.105]

    Так как в точке максимума электрокапиллярной кривой д = 0, а = г,=о, то интегрирование (11.12) [c.241]

    Было найдено (см., например, работы Луггина), что положение максимума электрокапиллярной кривой оказывается иным, если вместо ртути использовать легкоплавкие сплавы или амальгамы. С наибольшей полнотой этот вопрос был изучен Фрумкиным с сотр. По их данным, потенциал максимума электрокапиллярной кривой галлия составляет —0,69 В, а насыщенной амальгамы индия —0,65 В по водородной шкале. Более того, как было установлено еще Гуи, даже для одного и того же металла — ртути — потенциал максимума электрокапиллярной кривой изменяется в широких пределах в зависимости от состава раствора. [c.250]

    Из уравнения (304) следует, что заряд q = О при потенциале, соответствующем максимуму электрокапиллярной кривой (т. е. при а = max), положителен при более положительных потенциалах и отрицателен при более отрицательных потенциалах (см. [c.169]

    Рассмотрим строение двойных электрических слоев в разных точках электрокапиллярной кривой при отсутствии и в присутствии в растворе поверхностно-активных молекул (рис. 84, / и II). Точка f соответствует потенциалу нулевого заряда в присутствии поверхностно-активных молекул в растворе. Она расположена при том же потенциале, что и точка Ь на кривой 1, в которой поверхность ртути заряжена положительно. Разность потенциалов ф — ф равна адсорбционному Ч-потенциалу. Положительное значение адсорбционного 1з1-потенциала указывает на то, что молекулы органического вещества обращены к поверхности ртути положительным концом диполя. Другие органические вещества могут быть обращены к поверхности ртути отрицательным концом диполя, что приведет к сдвигу максимума электрокапиллярной кривой в сторону отрицательных потенциалов. [c.306]

    Если поверхностно-активное вещество не проявляет заметно ионогенных свойств, то оно будет лучше адсорбироваться на слабо заряженных поверхностях, т. е. вблизи точки нулевого заряда, где больше поверхностное натяжение. Это связано с тем, что именно при этих условиях в результате адсорбции произойдет наибольшее уменьшение энергии Гиббса поверхностного слоя. Экспериментальные данные полностью подтверждают этот вывод (рис. И. 11). Максимум электрокапиллярной кривой в присутствии ПАВ снижается, становится менее четким, но не сдвигается ио оси потенциала. Такая закономерность позволяет использовать метод, основанный на адсорбции неионогенных ПАВ, для нахождения точки нулевого заряда. Ионогенные вещества, ионы которых значительно отличаются по поверхностной активности, могут сдвигать точку нулевого заряда в ту или иную сторону по оси потенциала. Например, анионы 0Н , ЗО , СО3 , НРО не являются поверхностно-активными на границе вода — ртуть (они сильно гидратированы и к ртути не имеют специфического сродства) и поэтому [c.52]


    Потенциал, соответствующи ] максимуму электрокапиллярной кривой, называется потенциалом незаряженной поверхности е =о. Дальнейшее смещение потенциала электрода в сторону электроотрицательных значений приводит к тому, что поверхность заряжается отрицательно, а соотношение сил притяжения (между отрицательно заряженной поверхностью и, на этот раз, катионами в растворе) с силами отталкивания (между избыточными электронами на поверхности ртути) приводит к снижению о. [c.100]

    Учитывая, что поверхностно-активные ионы влияют на положение максимума электрокапиллярной кривой или на потенциал незаряженной поверхности (Ue=o), вызывая смещение к более положительным или более отрицательным значениям, величина не является константой, характерной для данного электрода. Один и тот же электрод может иметь несколько в зависимости от природы и концентрации веществ, присутствующих в растворе. [c.105]

    После введения поверхностно-активных веществ потенциал максимума электрокапиллярной кривой смещается от величины е =г поверхностно-неактивного электролита в положительную или отрицательную сторону до 6 =0. [c.106]

    Из уравнения (И 1.9) следует, что при дс — О (максимум электрокапиллярной кривой) = Чк т. е. по разнице между значениями е,=о и е,=о можно определить величину 1111 в поверхностно-активном электролите  [c.106]

    Для растворов умеренной концентрации вычислить без поверхностно-активных веществ — величину потенциала плотной части двойного электрического слоя гр в присутствии поверхностно-активных веществ — величину потенциала незаряженной поверхности е =о. если известно значение потенциала е =о, соответствующего максимуму электрокапиллярной кривой, полученной до введения данного поверхностно-активного вещества. [c.114]

    При увеличении концентрации соли, содержащей поверхностно активный анион, происходит дополнительное снижение максимума электрокапиллярной кривой и дальнейший сдвиг его в отрицательную [c.43]

    Однако, чтобы величина / действительно выражала заряд металлической обкладки двойного слоя, надо предположить, что заряд ионов не меняется в процессе их адсорбции. Если это условие не выполняется, то, например, при потенциале максимума электрокапиллярной кривой на поверхности будет некоторый заряд, зависящий от степени переноса заряда адсорбированного иона. Так, если при адсорбции анионов на ртути происходит образование ковалентной связи, то это означает, что заряд иона частично переносится на поверхность металла. Однако на ртутном электроде перенос заряда не учитывается, а определение заряда по уравнению (15.1) следует признать в первом приближении удовлетворительным..  [c.70]

    Если в растворе, содержащем избыток индифферентного электролита, Лн + =0 (модельное допущение), то Q"=q. Таким образом, потенциал, соответствующий максимуму электрокапиллярной кривой 1-го рода, // + есть потенциал нулевого полного заряда - с=о. а максимум кривой 2-го рода отвечает потенциалу нулевого свободного заряда [c.74]

    Кривые дифференциальной емкости в расплавах для большинства исследованных металлов (свинец, кадмий, олово, алюминий, сурьма, серебро, таллий, висмут, индий, галлий и теллур) имеют форму, близкую к параболической, с ярко выраженным минимумом и практически симметричными ветвями (рис. 78). Потенциалы минимума во всех случаях близки к потенциалам максимума электрокапиллярной кривой в расплаве, т. е. к п. н. з. соответствующего металла. Емкость в минимуме достаточно высока 0,20- 0,75 Ф/м в зависимости от природы металла и расплава. [c.137]

    При увеличении концентрации соли, содержащей поверхностноактивный анион, происходит дополнительное снижение максимума электрокапиллярной кривой и дальнейший сдвиг его в отрицательную сторону (рис. 20). Сдвиг восходящей и нисходящей ветвей ст, ф-кривых в этом случае происходит несимметрично. [c.48]

    Согласно основному уравнению электрокапиллярности (3,1) образование двойного электрического слоя на межфазной границе электрод/раствор приводит к уменьшению величины а. Этот эффект, обусловленный электростатическим отталкиванием одноименных зарядов, предопределяет характерную форму электрокапиллярной кривой (в виде перевернутой параболы). В соответствии с уравнением Липпмана (3.3) наклон электрокапиллярной кривой равен плотности зарядов <7 на поверхности электрода. В максимуме электрокапиллярной кривой да/дЕ О и д О, а потому потенциал электрокапиллярного максимума называют потенциалом нулевого заряда. Впервые это понятие было введено Фрумкиным в 1927 г. Для нахождения потенциала максимума электрокапиллярной кривой используется метод Оствальда — Пашена. Он состоит в том, что электрокапиллярную кривую пересекают рядом хорд, параллельных оси абсцисс, затем находят их середины и экстраполируют линию, соединяющую эти точки, до пересечения с электрокапиллярной кривой (рис. 3.8). [c.148]

    На рис. 12.3 сопоставлены построенная ио данным опыта кривая изменения дифференциальной емкости двойного слоя с ф-но-тенциалом для ртутного электрода в водном растворе 0,001 М NaF и емкостная кривая, вычисленная для того же раствора по уравне-шпо (12.7). Ни ход теоретической кризой, ни абсолютные значения емкостей не совпадают с Э1чспернл1ептсльными данными. ii KOTopoe совпадение наблюдается вблизи нотенциала. максимума электрокапиллярной кривой, где двойной с.той благодаря малой величине [c.265]


    В подавляющем большинстве случаев наибольшее значение имеют блокировочный, или механический, коэффициент уз и адсорбционный, или двойнослойный, коэффициент 74 кинетические коэффициенты Yi и у2 обычно мало отличаются от единицы. Так как уз и 74 можно найти не прибегая к прямым коррозионным измерениям, то появляется возможность теоретического расчета коэффициента торможения. Сопоставление расчетных коэффициентов торможения (yti op) кислотной коррозии железа и цинка с полученными экспериментально (уэксп) приведено в табл. 24.1. Необходимые для расчета значения коэффициентов переноса заимствовались из результатов поляризационных измерений, величины 0 (степень покрытия поверхности металла ингибитором) брались средними из данных трех независимых методов, изменение Аг1з принималось равным смещению максимума электрокапиллярной кривой в присутствии данной концентрации ингибитора — хлорида децил-З-оксипи-ридиния. Расхождение между расчетными и опытными значениями коэффициентов не превосходит обычных ошибок коррозионных измерений. [c.508]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    Рассмотрим кратко электрокапиллярные кривые в присутствии поверхностно-активных органических веществ (рис. 22). В присутствии h-QHjOH происходит снижение пограничного натяжения в максимуме электрокапиллярной кривой, сдвиг п. н. з. в положительную сторону и слияние а.Е-кривых при достаточно большом удалении от п.-н. з. как в катодную, так и в анодную стороны. Снижение пограничного натяжения связано с положительной адсорбцией бутилового спирта на поверхности ртути. Сдвиг п. н. з. свидетельствует об ориентированной адсорбции органического вещества. Молекула н-С Н ОН при адсорбции ориентируется к поверхности своим положительно заряженным концом, что и приводит к сдвигу п. н. 3. Б положительную сторону. Имеются, однако, органические вещества, которые смещают п. н. 3. в отрицательную сторону. Совпадение а, -кривых при доста- [c.44]

    Таким образом, наклон электрокапиллярной кривой дает заряд поверхности электрода. В максимуме а, -кривой до1дЕ=0 и, следовательно, д=0. Поэтому положение максимума электрокапиллярной кривой определяет потенциал нулевого заряда. В растворе бинарного электролита при = onst уравнение (VH.18) принимает вид [c.152]

    Как следует из уравнения (3.3), максимум электрокапиллярной кривой, отображающей зависимость а от при = onst, соответствует потенциалу нулевого заряда q=o- Вторичное дифференцирование по [c.135]

    Рис 3.8. Графический метод Оствальда — Пашена для нахождения максимума электрокапиллярной кривой (ртутный электрод в 0,1 М N32804) [c.149]


Смотреть страницы где упоминается термин Максимум электрокапиллярный: [c.237]    [c.240]    [c.242]    [c.248]    [c.249]    [c.250]    [c.261]    [c.266]    [c.308]    [c.99]    [c.100]    [c.117]    [c.310]    [c.134]    [c.143]    [c.146]    [c.134]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.28 ]

Инструментальные методы химического анализа (1960) -- [ c.84 ]

Инструментальные методы химического анализа (1960) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Максимум вторичный электрокапиллярной кривой

Потенциал электрокапиллярного максимума

Электрокапиллярные



© 2025 chem21.info Реклама на сайте