Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной слой диффузная часть

    В. Электролиты, содержащие ионы, величина заряда которых отличается от заряда противоионов исходного двойного электрического слоя. Диффузная часть двойного электрического слоя в этом случае преимущественно образуется ионами с более высоким зарядом, и концентрации ионов с зарядами 2] и 22 в двойном слое связаны с их кон-дентрациями в объеме соотношением [c.207]


    В разбавленных растворах значительная часть ионов находится в диффузной части двойного слоя и н ней наблюдается заметное падение потенциала. В концентрированных растворах, наоборот, значительная часть ионов находится в плотной части двойного слоя, диффузная часть практически отсутствует и падение потенциала в ней ничтожно. Падение потенциала приходится полностью на плотную часть двойного слоя. Электрокинетический потенциал приближается к нулю. [c.112]

    При относительном перемещении фаз, из-за гидратации твердой поверхности и ионов, граница скольжения проходит на некотором расстоянии от твердой поверхности. В результате этого двойной электрический слой подразделяется на плотную (адсорбционную) и диффузную части (рис. 100). [c.330]

    Структура ДЭС как целого зависит от особенности -3(1 акдой конкретной системы. Она может быть как относительно простой, так и достаточно сложной. Для описания этой структуры обычно используют теорию Гуи—Чепмана [20, 21], а также теории Штерна [221 и Грэма [23], позволяющие учесть специфику конкретных систем. Однако специфика структуры ДЭС связана главным образом с той. его частью, которая сосредоточена непосредственно на поверхности раздела и толщина которой не превышает нескольких ангстрем. В эту часть ДЭС входит заряд смежной с раствором фазы н заряд специфически адсорбированных ионов — так называемая плотная часть двойного слоя. Диффузная же, то есть объемно-поверхностная,, часть ДЭС при умеренных концентрациях ионов в растворе не зависит от механизма заряжения поверхности раздела. Она определя-ется только величиной заряда и имеет примерно одинаковое, доста-точно хорошо изученное и относительно простое строение. [c.14]

    В разбавленных растворах значительная часть ионной обкладки двойного слоя диффузна и поэтому в диффузной части двойного ионного слоя наблюдается заметное падение потенциала. В концентрированных раство- [c.30]

    В разбавленных растворах первичное электронное облако может быть соизмеримо по размерам с диффузным двойным слоем. Поэтому часто бывает выгодно использовать растворы с высокой ионной силой, чтобы уменьшить в пределах возможного влияние двойного слоя на квазистационарную концентрацию электронов в первичном облаке и выравнять распределение концентрации акцептора в первичном и вторичном облаках. При трактовке результатов, полученных в таких растворах, удобно предположить, что все гидратированные электроны локализованы в плоскости, расположенной на расстоянии б от поверхности электрода. Хотя физический смысл параметра б не совсем ясен, все же можно весьма приближенно отождествить его со средним расстоянием гидратированных электронов от поверхности. Из уравнения диффузии [c.121]


    О. А. Есиным и Б. Ф. Марковым (эффект Есина — Маркова), она и не обеспечивает количественной сходимости с опытом. При расчете емкости по формуле Штерна следует иметь в виду, что общая емкость С двойного слоя состоит из двух последовательно включенных емкостей — его плотной масти С и диффузной части С . [c.270]

    При сделанных Штерном допущениях емкость диффузной части двойного слоя должна быть значительно больше емкости его плотной части и, как это вытекает из уравнения (12.16), общая емкость определяется в основном гельмгольцевской частью двойного слоя. Определение емкости с использованием модели Штерна приводит поэтому к результатам, согласующимся с опытом как по величинам емкости, так и по характеру ее зависимости от потенциала электрода и концентрации раствора. [c.270]

    Теория электрохимического перенапряжения относилась первоначально к тому случаю, когда можно было пренебречь тонкой структурой двойного слоя и не учитывать распределения потенциала между его плотной и диффузной частями. Это допущение оправдывается (с наибольшей полнотой — в области малых перенапряжений), если выполнены следующие условия. [c.347]

    Ряд исследователей считают, что коагуляция связана с преодолением энергетического барьера в результате сжатия диффузной части двойного слоя ионов [32] другие полагают, что коагуляция латексов электролитами происходит в основном за счет понижения растворимости ПАВ, стабилизующего латексные частицы (высаливание ПАВ) [33]. Степень ионизации молекул ПАВ в адсорбированном слое в значительной степени зависит от содержания электролита в водной фазе, от концентрации и природы адсорби->ованного ПАВ, от степени гидролиза мыла или от pH [34, 35]. Ломимо этого, степень заполнения поверхности латексных частиц адсорбированными ПАВ оказывает огромное влияние на агрегативную устойчивость этих коллоидных систем, особенно при заполнении поверхности более чем на 40—50% [36—38], что, по-видимому, связано с изменением энтропии коагуляции коллоидной системы. [c.256]

    Поскольку внутри плотной части двойного слоя нет электрических зарядов, то изменение потенциала с увеличением расстояния от электрода здесь линейное (см. рис. XX, 5, область ). В то же время в диффузной части двойного слоя [c.537]

    Сд — емкость диффузной части двойного слоя. [c.539]

    С =Сг. Однако в достаточно разбавленных растворах (0,01 н. и меньше) при малых зарядах электрода (т. е. вблизи потенциала нулевого заряда) емкость диффузной части двойного слоя становится меньше емкости плотной [c.539]

    Толщина этой диффузной части двойного электрического слоя оценивается А. Н. Фрумкиным в чистой воде — до 1 мкм, для не очень низких концентраций растворов—в 10 —10 см, а в концентрированных растворах — в десятки или единицы ангстрем. [c.159]

    Таким образом, потенциал металла относительно раствора Va разбивается на две части — приходящуюся на плотную часть двойного слоя толщиной бо. и ij) —приходящуюся на диффузную часть двойного слоя толщиной Я, [c.159]

    С уменьшением толаины двойного электрического слоя (диффузной части) электрокинетический потенциал уменьшается, уменьшаются электростатические сшш отталкивания и одновременно возрастают силы межмолекулярного прияжения энергетический барьер снижается и наступает коагуляция. [c.33]

    Электрокинетич. явления использованы при создании преобразователей перепада давления, линейных и угловых ускорений. При заполнении орг. жидкостью (чаще всего ацетоном) капиллярной пористой перегородки из стекла, керав шки или др. диэлектрика на пов-сти капилляров возникает двойной электрический слой. Диффузная часть слоя благодаря тепловому движению находится в жвдкости и способна перемещаться вдоль пов-сти капилляров вместе с жидкостью. При наложении перепада давления на пористую перегородку электрич. зарад диффузной части двойного электрич. слоя в определенной степени увлекается движущейся жвдкостью и ионный ток фиксируется электродами, расположенными по обе стороны пористой перегородки. Приборы, основанные на электрокинетич. явлениях, отличаются от концентрационных Э. п. и. более высоким верхним пределом частотного диапазона (500 ги и выше), но при этом имеют и более высокое внутр. электрич. сопротивление (ок. 1 МОм). [c.461]

    Рост частиц твердой фазы за счет процесса коагуляции происходит следующим образом. Как правило, по достижении определенных размеров зародыш стабилизируется вследствие адсорбции ионов и молекул на его поверхности. При этом образуются частицы коллоидных размеров. Коллоидная частица (мицелла) состоит из двух частей — ядра, образованного из твердой фазы, и стабилизатора, состоящего из потенциалоопределяющих ионов растворенного электролита, связанных с ядром адсорбционными силами . Благодаря электростатическому притяжению вокруг стабилизатора собираются противоположно заряженные компенсирующие ионы электролита, образующие внешнюю оболочку мицеллы. Часть компенсирующих ионов находится на молекулярном расстоянии от потенциалоопределяющих ионов, образуя так называемый гельмгольцевский двойной слой, а другая часть расположена диффузно, т. е. концентрация ионов постепенно убывает от поверхности мицеллы к периферии слоя (диффузная часть двойного электрического слоя)Ч Существование диффузной части двойного электрического слоя обусловливает наличие заряда коллоидной частицы (так называемый электрокинетический потенциал), который служит одним из факторов стабильности коллоидных частиц. [c.66]


    Появление оксида на иоверхности металла изменяет строение двойного электрического слоя. В этом случае его уже нельзя представить простой моделью Штерна — Грэма, которая использовалась ири создании теории водородного перенапряжения. В этом случае, по Гэру и Ланге (1958 , к падению потенциала в гельмгольцевской и диффузной частях дво1И1ого слоя, учитываемых в модели Штерна Грэма, следует добавить падеиие потенциала в слое оксида (рис. [c.427]

    Diffusionss hi ht f диффузионный слой диффузная часть двойного слоя Diffusionss hnitzel п р1 жом, высоложенная (свекловичная) стружка [c.157]

    Ра -- полная разность потенциалов между металлом и раствором ф — падение потенциала в плотной чости двойного слоя (гельмгольцевской части) — падение потенциала в диффузной части двойного [c.29]

    Такое расхождение связано с тем, что теория Гуи — Чап-мапа не учитывает собственного объема ионов, которые отождествляются с материальными точками, обладающими только зарядами. В результате этого ничто не препятствует ионам в принятой модели подходить сколь угодно близко к поверхности металла. Расположенная в растворе часть двойного слоя может оказаться локализованной, несмотря на свою диффузность, в очень тонком слое, значительно меньшем радиуса иона. В этом легко убедиться, если, подобно тому как это делалось в теории Дебая — Гюккеля, ввести характеристическую длину /д, определяющую толщину плоского конденсатора, эквивалентного по емкости диффузионному двойному слою. Характеристическую длину можно найти, приравняв правые части уравнений (12.4) и (12.7)  [c.266]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Из уравнения (XX, 6) видно, что определяющей суммарную емкость двойного электрического слоя является меньшая из величин Сг и Сд. Емкость плотной части двойного слоя определяется размерами адсорбированных ионов и способностью их деформироваться под действием электрического поля. Поэтому при постоянной температуре Сг является функцией только заряда поверхности и не зависит от концентрации электролита. Обычно величины емкости плотного слоя лежат в пределах 20-4-40 мкф/см . В отли-чие 01 Сг, емкость диффузной части двойного слоя существенно зависит от концентрации электролита (уменьшается с разбавлением, а также с уменьшением заряда электрода). Если концентрация электролита высока, то емкость диффузной части двойного слои значительно превышает емкость слоя Гельмгольца. В этом случае [см. уравнение (XX, 6)] [c.539]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива, Противоионы обмениваются на другие иоз1Ы того же знака. Повышение концентрацни раствора пр Шодит к вытеснению противононов нз диффузной в плотную часть двойного электрического слоя. Толщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой кот ,ентра-ции раствора (примерно 0,1 и.) все противоионы оказываются [c.331]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    Первый член правой части уравнения (535) представляет собой постоянную величину. Если в растворе кислоты имеется избыток постороннего электролита, то это приводит к сжатию и стабилизации диффузной части двойного электрического слоя, причем i onst. В этом случае, объединяя постоянные величины и полагая = 0,5, можно упростить уравнение (535)  [c.254]

    Строение двойного электрического слоя в отсутствие специфической адсорбции. Под строением двойного слоя понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части 1) плотную, или гельмголь-цевскую, образованную ионами, практически вплотную подошедшими к металлу 2) диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона (рис. 171, /). Толщина плотной части.порядка 10 см, диффузной — 10 —10 см. Согласно закону электронейтральности [c.473]


Смотреть страницы где упоминается термин Двойной слой диффузная часть: [c.230]    [c.54]    [c.153]    [c.29]    [c.31]    [c.157]    [c.71]    [c.31]    [c.268]    [c.269]    [c.274]    [c.353]    [c.256]    [c.537]    [c.538]    [c.539]    [c.330]    [c.332]    [c.334]    [c.473]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.13 , c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузный слой



© 2025 chem21.info Реклама на сайте