Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лептоны

    Движение лептонов (легких частиц) может происходить внутри твердого тела, в тонком периферическом слое, на поверхности, в тонком адсорбционном слое или через поток реакционной среды. Для того, чтобы вывести лептоны из стабильного или метастабильного состояния, необходима определенная энергия активации следовательно, скорости их миграции увеличиваются экспоненциально с увеличением температуры. Поэтому температура имеет заметное влияние на значения 5, Ь и Ы, которые в настоящее время однако невозможно точно рассчитать. Для оценки этих эффектов можно прибегнуть к помощи старых эмпирических правил, которые гласят, что кристаллические решетки становятся заметно более мобильными при температуре внутри твердого вещества > 0,5 Т (правило Таммана) [c.17]


    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Имеется много предположений о причине возникновения гравитационного поля. Из них наиболее близко к нашим результатам исследований участие нейтрино в гравитационных взаимодействиях [37]. Нейтрино бывает мюонное, электронное, позитронное, а также т-нейтрино, связанное с тяжелыми лептонами, имеющимися в атомном ядре. Известно, что 80% времени протон и нейтрон находятся в неизменном состоянии, а 20%1 в диссоциированном состоянии [7]. При виртуальной диссоциации протона и нейтрона образуются  [c.61]

    Формулировка закона радиоактивных смещений должна опираться на основания Системы атомов, отражать генезис взаимопревращения именно атомов, а не химических элементов. А суть этих превращений состоит в изменении числа элементарных (субъядерных) частиц протонов, нейтронов, лептонов в ядре атома. А сам закон должен подняться до "теории эволюции атомов", подобно тому, как Периодический закон — для Системы химических элементов. [c.103]

    Вторая группа реакций основана на преобразовании нуклонов в ядре вследствие излучения или захвата лептонов (е, е" ). В этом случае общее число нуклонов в ядре остается неизменным, а изменяется только соотношение протонов и нейтронов. То есть идет реструктуризация ядра. Например, 3 -излучение (испускание е ) не относится ко всему ядру, а является конкретной реакцией п р + ел В результате в ядре становится на один нейтрон меньше, а протонов — на один больше. Сумма же нуклонов остается неизменной, следовательно, и атомная масса остается прежней. В результате этой реакции один химический элемент превращается в другой. [c.104]


    Частицы с массой около 2000, начиная с протона и кончая кси-минус , относятся к классу барионов — тяжелых частиц со спином Звездочкой отмечены частицы, для которых время жизни безгранично для остальных, недолговечных частиц время жизни колеблется от 10 до 10 сек. Между этими классами частиц возможны самые разнообразные переходы, направляющиеся в сторону уменьшения массы частицы от барионов к мезонам, а от последних — к лептонам или фотонам. При соединении частицы и античастицы одного вида происходит их аннигиляция . Например, электрон и позитрон аннигилируют с образованием двух фотонов е + = 2у и т. п. [c.76]

    Известны две формы существования материи как объективной реальности вещество и поле. Вещество — материальное образование, состоящее из элементарных частиц, имеющих собственную массу, или массу покоя. К элементарным частицам с конечной массой покоя относятся электроны и позитроны (лептоны), протоны, нейтроны (нуклоны), гипероны и другие тяжелые частицы (барионы). Промежуточные по массе частицы между лептонами и нуклонами называются мезонами. Мезоны и барионы вместе именуются адронами. Все вещества в конечном итоге состоят из атомов, следовательно, из электронов, протонов и нейтронов. [c.5]

    Лептоны е- Электрон 1 — 1 Ч, Стабильный [c.361]

    Различные поля взаимодействуют друг с другом, и это взаимодействие проявляется в тех силах, с которыми частицы воздействуют друг на друга. Параметры, характеризующие эти взаимодействия, носят названия зарядов (электромагнитный, лептон-ный, барионный заряды и т, д.) частиц. [c.71]

    С нач. 50-х гг. ускорители превратились в осн. инструмент исследования Э. ч. Были открыты антипротон (1955), антинейтрон (1956), анти-Х-гиперон (1960), а в 1964 - самый тяжелый й -гиперон. В 1960-х гг. на ускорителях обнаружили большое число крайне неустойчивых резонансов. В 1962 выяснилось, что существуют два разных нейтрино электрон- ное и мюонное. В 1974 обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) частицы, к-рые оказались тесно связанными с новым семейством Э. ч.- очарованных , их первые представители открыты в 1976. В 1975 обнаружен тяжелый аналог электрона и мюона - т-лептон, в 1977 - частицы с массой порядка десяти протонных масс, в 1981 - красивые частицы. В 1983 открыты самые тяжелые из известных Э. ч.- бозоны (масса 80 ГэВ) и 2" ( 91 ГэВ). [c.470]

    Технология исследования материалов путем бомбардирования нейтронными пучками Вклад в физику лептонов Открытие сверхтекучести гелия-3 [c.779]

    Реальные катализаторы состоят из частиц различных размеров. Хорошо известно, что если возможно движение компонентов кристаллической решетки (лептонов), то можно гарантировать изменения, которые сводят до минимума поверхностную энергию. В отдельных частицах с низким парциальным давлением паров это может произойти только в результате изменения их геометрической формы (сглаживания) с образованием поверхностей с низкой энергией в агрегатах частиц, кроме того, происходит рост больших частиц за счет малых. Таким образом, значения 8, Ь н N уменьшаются, и чем меньше частицы, тем быстрее это происходит. Эти процессы, называемые в совокупности спеканием ( синтерингом ), должны быть замедлены, так как они всегда вредны для удельной активности кроме того, они, по-видимому, влияют и на селективность. [c.17]

    Современной физике известно, что качественная определенность каждого конкретного атома не вечна. Как отмечается [2, с. 206] "Согласно одной из космологических гипотез во Вселенной все время происходит преобразование атомов одного элемента в атомы другого элемента". Точнее было бы сказать преобразование атомов друг в друга , в широком смысле, а не только применительно к межхимэлементным переходам, т. е. межвидовым переходам. Существуют и внутривидовые переходы. В процессе постоянного взаимодействия атомов с окружающей средой происходит изменение числа их структурообразующих частиц (нуклонов и лептонов) и, соответственно, изменение качественных характеристик атомов. Как отмечается [2, с. 109] "Если система развивается, значит [c.85]

    Элементарные (фундаментальные) частицы. Под этим термином объединяются мельчайшие объекты материи. Считается, что все многообразие окружающего нас мира построено из простейших элементарных частиц, которые делят на три класса. К первому классу относится фотон (квант электромагнитного излучения). Второй класс объединяет легчайшие частицы—лептоны, образующие два семейства электронное (электронное нейтрино, электрон) и мюонное (мюонное нейтрино, мюон). Третий самый многочисленный класс составляют легкие и тяжелые частицы — адроны, состоящие из двух семейств мезонное (пион, каон, мезон и др.) и барионное (протон, нейтрон, гипероны и т. п.). [c.5]

    Масса всех частиц дана в электронных единицах, т. е. гпе- = 1. Фотон — частица, не имеющая массы покоя — это квант электромагнитного поля. Далее идет класс легких частиц — лептонов, возникающих при распаде других частиц либо возникающих пар ами (частица + античастица) под действием фотонов их спины равны 1 . Между лептонами и протоном сгруппирован класс мезонов со спином, равным 0. Пионы или я-мезоны являются квантами ядерных полей. По-видимому, взаимодействие протона и нейтрона обусловлено мезонным полем (Юкава), т. е. взаимный переход этих частиц протекает за счет обмена мезонов между нуклонами. Основную роль в этом обмене играют я-мезоны. Схемы перехода можно представить так  [c.76]

    Систематизацию фундаментальных частиц следует начать с рассмотрения лептонов И антилептонов. Известно восемь таких частиц. Некоторые их свойства приведены в табл. 20.1. Все они, за исключением мюона и антимюона, являются устойчивыми частицами. Слово лептон имеет греческое происхождение, от 1ер1о8 — мелкий, легкий. [c.596]


    Мюон вначале был назван мезоном, а затем мю-мезоном, однако теперь его относят к классу лептонов. Мезоны и антимезоны имеют барнонное число О и лептонное число 0. [c.599]

    Барионы имеют барнониое число +1 антибарионы я другие имеют лептонное число 0. имеют барионное число —1 те [c.600]

    Сохранение момента количества движения Сохранение электрического заряда Сохранение барионного числа Сохранение лептонного числа [c.600]

    Лептоны, к которым относятся электрон, нейтрино и мюон, имеют лептонное число +1, а антилептоны имеют лептонное число —1 все другие частицы имеют лептонное число 0. Лептонное число строго сохраняется во всех реакциях. [c.602]

    Табл. 20.4 содержит много примеров реакций, при которых происходит изменение странности. Отрицательный антикаон К имеет странность— 1. Он может распадаться по шести механизмам с образованием пионов и лептонов (мюона, электрона, антинейтрино), каждый из которых имеет странность 0. Общий период полураспада для этих реакций составляет 1,22-10- с, т. е. он значительно превышает период полураспада эта-частицы, и такой продолжительный период полураспада объясняется изменением странности. [c.604]

    Известна лишь одна резонансная частица, похожая на эта-частицу и ро-частицу в том отношении, что имеет лептонное число О, барионное число О и странность О, — это оо-частица, имеющая массу 790 МэВ, собственный заряд О, вектор заряда О и спин момента количества движения, равный 1. Согласно наблюдениям, она образуется следующим образом  [c.605]

    ПОЗИТРОН, стабильная элементарная частица самая легкая из частиц, обладающих массой покоя и положит, элементарным электрич. зарядом. П.—античастица электрона их массы покоя и спины в точности равны, а электрич. заряды и магн. моменты равны по абс. величине и противоположны по знаку. Принадлежит к лептонам (см. Элементарные частицы). Может возникать в процессах рождения электронно-позитронной пары, при Р-распаде атомных ядер, в результате превращ. элементарных частиц. Время жизни П. в в-ве ограничивается аннигиляцией с электроном. ПОЗИТРОНИЙ, атом, состоящий из позитрона е+ и электрона е . Обозначается Р5. Сходен с атомом водорода, в к-ром протон замещен позитроном. Образуется при торможении своб. позитронов в в-ве в результате присоед. позитроном электрона одного из атомов среды, реже — при распадах ядер или элементарных частиц, обуслопленных электромагн. взаимодействиями (см. Элементарные частицы). Неустойчив, т. к. при взаимод. позитрона с электроном происходит аннигиляция, в результате к-рой П. превращается в 2 или 3 -у-кванта. Среднее время жизни П. до аннигиляции на 2 7-кванта — 1,25-10 с, на 3 у-кванта — [c.453]

    ЭЛЕКТРОН, стабильная элементарная частица, самая легкая из частиц, обладающих массой покоя (9-10 г) и отрицат. элементарным электрич. зарядом (1,6-10" Кл). Имеет спин, равный /2 (в единицах постоянной Планка), и магн. момент, равный магнетону Бора. Принадлежит к лептонам (см. Элементарные частицы), может возникать в процессах рождения электронно-позитронной пары, при (З-распаде атомных ядер, в результате превращ. элементарных частиц. Э.— составная часть всех атомов в-ва. Э. образуют электронные оболочки атомов, к-рые определяют электрич., оптич. и хим. св-ва атомов и молекул. Направленный поток Э. в металлах и полупроводниках представляет собой электрич. ток. Управляемые при помощи электрич. и магн. полей потоки Э. использ. в разл. электронных приборах. Ускорители заряж. частиц позволяют получать пучки Э. с высокой энергией, к-рые могут вызывать расщепление атомных ядер и рождение разл. элементарных частиц. [c.700]

    Вторая фуппа Э. ч.- л е п т о н ы, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов электрон, электронное нейтрино, мюон, мюонное нейтрино, тяжелый т-лептон и соответствующее нейтрино. Электрон (символ е) считается материальным носителем наименьшей массы в природе т , равной 9,1 10 г (в энергетич. единицах 0,511 МэВ) и наименьшего отрицат. электрич. заряда =1,6 -lO" Кл. Мюоны (символ р,") - частицы с массой ок. 207 масс электрона (105,7 МэВ) и электрич. зарядом, равным змяду электрона тяжелый т-лептон имеет массу ок. 1,8 Г В. Соответствующие этим частицам три типа нейтрино - электронное (символ Vj), мюонное (символ vj и т-нейтрино (символ V,) - легкие (возможно, безмассовые) электрически нейтральные частицы. [c.469]

    Все лептоны имеют спин Vjft (ft - постоянная Планка), т. е. по статистич. св-вам являются фермионами (см. Статистическая термодинамика). [c.469]

    Каждому из лептонов соответствует античастица, имеющая те же значения массы, спина и др. характеристик, но отличающаяся знаком электрич. заряда. Существуют позитрон (символ е ) - античастица по отношению к электрону, положительно заряженный мюон (символ l ) и три типа антинейтрино (символ v , v , v,), к-рым приписывают противоположный знак особого квантового числа, наз. лептонным зарядом (см. ниже). [c.469]

    Внутренними характеристиками (квантовыми числами) Э. ч. являются лептонный (символ L) и барионный (символ В) заряды эти числа считаются строго сохраняющимися величинами для всех типов фундам. взаимод. Лля лептонных нейтрино и их античастиц L имеют противоположные знаки для барионов 5=1, для соответствующих античастиц В = -1. [c.470]

    Важное св-во Э. ч,- их способность к взаимопревращениям в результате электромагнитных или др. взаимодействий. Один из видов взаимопревращений - т. наз. рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары Э. ч. с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар е е, мюонных пар новых тяжелых частиц при столкновениях лептонов, образование из кварков СС- и -состояний (см. ниже). Другой вид взаимопревращений Э. ч,- аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (у-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности). [c.470]


Библиография для Лептоны: [c.470]   
Смотреть страницы где упоминается термин Лептоны: [c.269]    [c.177]    [c.59]    [c.22]    [c.23]    [c.27]    [c.585]    [c.586]    [c.596]    [c.596]    [c.601]    [c.370]    [c.706]    [c.707]    [c.638]   
Химический энциклопедический словарь (1983) -- [ c.706 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.706 ]

Общая химия (1964) -- [ c.540 ]

Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.6 , c.15 ]

Аналитическая химия (1980) -- [ c.21 ]

Краткий справочник химика Издание 6 (1963) -- [ c.52 , c.522 ]

Строение материи и химическая связь (1974) -- [ c.38 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.554 ]

Основы общей химии Том 3 (1970) -- [ c.340 ]

Краткий справочник химика Издание 7 (1964) -- [ c.521 , c.522 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.6 , c.15 ]

Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.63 , c.66 ]

Эволюция без отбора (1981) -- [ c.63 , c.66 ]




ПОИСК







© 2025 chem21.info Реклама на сайте