Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электромагнитное излучение квант

    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]


    В уравнениях (IV. П) и (IV. 12) второй член зависит только от вращательного квантового числа /. Первый член зависит от квадрата кван тового числа к, определяющего проекцию момента количества движения на главную ось симметрии, проходящую через центр тяжести молекулы. Каждый энергетический уровень 2(2 + 1) раз вырожден, за исключением нулевого уровня, где й = О и вырождение 2/ + 1. При поглощении квантов электромагнитного излучения во вращательном спектре наблюдают переходы молекул Д/ = + 1, Дй = 0. [c.29]

    В конце XIX в. стало ясно, что при помощи классической механики невозможно объяснить многие экспериментальные факты, относящиеся к поведению атомных систем. Мы уже ссылались на теплоемкости газов в гл. 9. В 1900 г. Планк при выводе уравнения для интенсивности излучения абсолютно черного тела предположил, что электромагнитное излучение квантовано. Идея Планка о квантовании была использована в 1905 г. Эйнштейном при интерпретации фотоэффекта и в 1924 г. де Бройлем для предсказания волновых свойств частиц. В 1913 г. Бор развил свою теорию строения атома водорода. В 1926 г. Гейзенберг и Шредингер разработали квантовую механику. Квантовая механика имеет очень большое значение для понимания химии. [c.363]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    Влияние электромагнитного излучения. Под влиянием излучения ультрафиолетового или видимого участка спектра протекают реакции, получившие название фотохимических реакций. При поглощении кванта света молекулы переходят в энергетически возбужденное состояние с повышенной реакционной способностью. Многие фотохимические реакции заканчиваются стадией цепной реакции. [c.530]

    Отсюда видно, что краситель поглощает электромагнитное излучение, кванты которого — фотоны — несут энергию, по меньшей мере равную Ае. Длину волны этого излучения можно определить, пользуясь известным соотношением  [c.94]


    Новаторское предположение Планка заключалось в том, что энергия электромагнитного излучения выделяется порциями, или квантами. Энергия одного кванта излучения пропорциональна частоте излучения [c.338]

    На протяжении щести лет берлинский профессор Макс Планк занимался проблемой равновесного электромагнитного излучения абсолютно черного тела. Он искал единую формулу распределения энергии в спектре этого излучения. До него были известны формулы, описывающие два крайних случая — испускания длинных и коротких волн. Общее же решение было неизвестно. После долгих раздумий Планк пришел к выводу, что проблема может быть решена, если допустить, что энергия колебаний атомов Е (Планк полагал, что твердое тело можно представить -состоящим из атомов, колеблющихся около положения равновесия) может принимать не любые значения, но только кратные некоторому наименьшему количеству (кванту) энергии (е) .  [c.7]

    Соотношение (1.8) называется уравнением Планка. В дальней-, шем Эйнштейн распространил представления Планка о дискретности энергии иа электромагнитное излучение, указав, что его можно рассматривать как поток квантов (см. разд. 1.3). [c.12]

    Волновой характер движения микрочастиц. Как известно, для описания электромагнитного излучения привлекают как волновые, так и корпускулярные представления с одной стороны, монохроматическое излучение распространяется как волна и характеризуется длиной волны Я (или частотой колебания v) с другой стороны, оно состоит из микрочастиц — фотонов, переносящих кванты энергии. Явления дифракции и интерференции электромагнитного излучения (света, радиоволн, Y-лучей, рентгеновских лучей и пр.) убедительно доказывают его волновую природу. В то же время электромагнитное излучение обладает энергией, массой, производит давление и т. д. Так, известно, что за год масса Солнца уменьшается за счет излучения на 1,5-101 т. [c.8]

    Таким образом, из всего спектра частот электромагнитного излучения сложные молекулы поглощают только те кванты света, частота которых совпадает с собственными частотами движения внешнего электрона в молекуле вещества. [c.114]

    А. Введение. Согласно квантовой теории Планка любое поглощение энергии атомом или молекулой приводит к переходу одного или нескольких электронов в состояние с более высокой энергией. При возвращении в низшее состояние электрон испускает фотон — квант электромагнитного излучения, энергия которого, Дж, равна  [c.192]

    На рис. 8 показаны энергетические уровни, переходы молекул при поглощении квантов электромагнитного излучения и вид спектра поглощения двухатомных молекул. Уравнения (V. 17) и (V. 18) выведены с учетом того, что вращательная постоянная В зависит от энергии колебательного движения. Вращательная постоянная В уменьшается с ростом энергии колебательного движения, что выражается уравнением [c.36]

    Тепловым, или температурным называют электромагнитное излучение нагретых тел. Лучистая энергия испускается и поглощается телами не непрерывно, а отдельными дискретными порциями - квантами энергии с определенной частотой излучения. Явление поглощения связано с возникновением более энергет№(ных возбужденных состояний молекул или атомов, а изл /чения - с переходами в менее эиергет гнтое состояние. Частоты, на которых происходит поглощение и излучение тел, являются характеристическими для рассматриваемого вещества, не зависят от температуры, давления и т.д. и изменяются лишь при изменении химического строения вещества. [c.9]

    Спектральные методы дают широкие возможности для наблюдения и исследования соответствующих аналитических сигналов в различных областях спектра электромагнитного излучения— это у-лучи, рентгеновское излучение, ультрафиолетовое (УФ), оптическое и инфракрасное излучение, а также микроволновое и радиоволновое. Энергия квантов перечисленных видов излучения охватывает очень широкий диапазон от 10 до 10 эВ, соответствующий диапазону частот от до 10 Гц. [c.7]

    Электронные переходы и спектры поглощения. Поглощение квантов электромагнитного излучения оптического диапазона молекулой или ионом обусловлено переходами электронов между электронными уровнями из основного в возбужденное состояние. Через 10 с частица, поглотившая квант, переходит обратно в основное состояние и вновь оказывается способной поглощать фотоны. Энергия, выделяющаяся при этом переходе, рассеивается в окружающей среде в виде тепла. Молекулы некоторых веществ могут терять энергию поглощенных квантов в виде фотонов, когда реализуется явление фотолюминесценции (см. разд. 1,2.5), [c.54]

    Цветность как способность к поглощению определенных квантов электромагнитного излучения оптического диапазона определяется электронным строением молекулы. Обычно ее [c.54]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]


    Величину lg(/o//) в (1.17) характеризующую поглощательную способность вещества в растворе, называют оптической плотностью. В аналитической практике, стремясь подчеркнуть сущность процесса, лежащего в основе фотометрического определения, а именно поглощение квантов электромагнитного излучения оптического диапазона аналитической формой, эту величину называют поглощением или светопоглощением и обозначают буквой А. Для раствора поглощающего вещества при постоянных концентрации и толщине поглощающего слоя А зависит от длины волны. [c.56]

    Энергия распространяется и передается, поглощается и испускается не непрерывно, а дискретно, отдельными порциями — квантами. Энергия системы микрочастиц (атом, молекула) также может принимать только определенные значения, которые являются кратными числами квантов. Энергия кванта зависит от частоты электромагнитного излучения  [c.18]

    На высоте порядка 100 км атомы кислорода ионизируются за счет поглощения квантов электромагнитного излучения Солнца  [c.35]

    Все электронные переходы, в том числе и переходы на локальные уровни типа 5 и 3—4 сопровождаются электронно-фонон-ным взаимодействием, в результате которого часть электронной энергии превращается в вибрационную энергию, т. е. в теплоту, нагревающую твердое тело выше первоначальной температуры, а часть излучается в виде квантов сниженной частоты, по сравнению с частотой поглощаемого излучения Поэтому, когда ширина запрещенной зоны не слишком сильно превосходит 3,1 эВ, т. е. энергию фотонов самого коротковолнового видимого света, полоса электромагнитного излучения данного вещества может находиться в области спектра видимого излучения. При более значительной ширине запрещенной зоны может иметь место испускание только ультрафиолетового излучения. [c.122]

    Испускание или поглощение электромагнитного излучения атомами и молекулами приводит к изменению их внутренней энергии. Состояние атома или молекулы с минимально возможной внутренней энергией называется основным, а все остальные состояния — возбужденными. Внутренняя энергия является величиной дискретной (квантовой), поэтому переход атома или молекулы из одного состояния в другое сопровождается всегда скачкообразным изменением энергии, т. е. получением или отдачей порции (кванта) энергии. [c.5]

    Поглощение квантов электромагнитного излучения происходит в соответствии с правилами отбора (см. дальше). Спектральные линии (или полосы), относящиеся к этим энергиям, появляются в различных областях спектра. [c.339]

    Дочерние ядра, образовавшиеся в результате распада радиоактивных ядер, часто обладают некоторым избытком энергии по сравнению с нормальным состоянием. По аналогии с возбужденным состоянием атома такое состояние ядра называют возбужденным. Возбужденные ядра переходят в основное состояние, выделяя энергию в виде квантов электромагнитного излучения, называемых у-квантами. Итак, если в процессе радиоактивного распада образуются возбужденные ядра, то такой распад всегда сопровождается испусканием у-квантов, а соответствующий изотоп является у-излучателем. [c.18]

    Луч света, по современным представлениям, представляет собой электромагнитное излучение, которое характеризуется следующими параметрами длиной волны л, частотой V, массой и энергией фотона е. Возникновение его обусловлено переходом электронов в атоме с орбиталей, более удаленных от ядра, на орбитали, расположенные ближе к ядру. Этот перескок электронов сопровождается уменьшением энергии на некоторую величину, т. е. ее излучением. Энергия, потерянная атомом, и есть энергия электромагнитных колебаний. Испускание атомом электромагнитных колебаний, так же как и их поглощение, происходит не непрерывно, а целыми неделимыми порциями — квантами. Величина кванта света или, как его еще называют, фотона выражается следующим равенством  [c.173]

    Излучение происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При это.м испускается или поглощается квант электромагнитного излучения, энергия которого равна разности энергии атома в конечном и исходном состояниях. [c.43]

    Для выявления энергетических изменений пропускают через образец вещества высокочастотное электромагнитное излучение (радиоволны), направленное перпендикулярно постоянному магнитному полю. Кванты энергии /IV этого излучения могут поглощаться веществом, если их величина совпадает с А (резонанс). Этого можно добиться, меняя частоту V радиоволн либо напряженность Н магнитного поля. Резонансное поглощение наступает при условии [c.53]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Гамма-лучи — это электромагнитное излучение, кванты, не имеющие ни массы покоя, ни заряда. Они редко сталкиваются с атомами и усп1евают пройти довольно большое расстояние до того, как растратят всю свою энергию и, следовательно, глубоко проникают в вещество. Известно восемь способов взаимодействия их с веществом три из них, являющиеся самыми основными, приводят к появлению вторичных электронов, которые затем вызывают возбуждение и ионизацию атомов. [c.190]

    В 1900 г. Виллард нашел третью компоненту излучения, испускаемого радиоактивными веществами, так называемые улучи. Эти лучи испускаются атомными ядрами в результате естествейных или искусственных превращений или вследствие торможения заряженных частиц, аннигиляции пар частиц и распадов частиц. ДлинЬ волн у-лучей большинства ядер, лежит в пределах от 0,0001 до 0,1 нм. у-Лучис энергией до 100 кэВ (мягкие у-лучи) ничем кроме своего ядерного происхождения не отличаются от характеристических рентгеновских лучей. Поэтому часто термин "ii-лучи применяют для обозначения электромагнитного излучения любой природы, если его энергия больше 100 кэВ. Фотоны, возт кающие в процессах аннигиляции и распадов, называют v-квантами. [c.102]

    Схемы переходов между различными состояниями, сопровождающимися испусканием или поглощением квантов электромагнитного излучения, представлены на рис. 1. Горизонтальными линиями на рис. 1 изображены уровви энергии различных  [c.5]

    Спектральные свойства вещества связаны с поглощением молекулами квантов электромагнитного излучения. При этом электрону, располагающемуся на самом верхнем энергетическом уровне, понадобится меньше исего энергии для перехода на следующие — вакантные уровни. Так, из табл. 4.4 следует, что самый верхний электронный переход в молекуле азота — это переход э.пектрона с уровня на уровень тг —> тг переход), в то время, как в молекуле Оо верхним будет тг — ст переход с меньшей час тотой поглощаемого излучения. [c.131]

    ФОТОН — элементарная частица с массой покоя, равной нулю, вследствие чего Ф. всегда движется со скоростью света. Спнн Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения, например, видимого света, рентгеновского или -излучения. Ф. называют также квантами — световыми квантами, рентгеновскими квантами или у-квантами. Ф. могут испускаться или поглощаться любой системой, содержащей электрические заряды или по которой проходит ток. Ф. с высокой энергией (7-кванты) испускаются при распадах атомных ядер и элементарных частиц, и могут вызывать расщепление атомных ядер и образование элементарных частиц. Понятие Ф. введено в 1899 г. М. Планком для объяснения распределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только определенными порциями (квантами) с энергией, равной hv (где /г — постоянная Планка). [c.268]


Смотреть страницы где упоминается термин Электромагнитное излучение квант: [c.10]    [c.67]    [c.31]    [c.55]    [c.254]    [c.146]    [c.93]    [c.11]    [c.57]    [c.44]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Квант

Квантованная АИМ

Электромагнитное излучение



© 2025 chem21.info Реклама на сайте