Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испускание

    Так, перескакивая на все более глубокие уровни, электрон одного возбужденного атома водорода может последовательно испустить фотоны нескольких серий. Поэтому в спектре испускания раскаленного водорода присутствуют все серии линий. Однако при измерении спектра поглощения атомарного водорода при низких температурах следует учитывать, что практически все атомы водорода находятся в основном состоянии. Поэтому почти все поглощение связано с переходами с уровня и = 1 на более высокие уровни, и в результате в спектре поглощения наблюдаются только линии серии Лаймана. [c.349]


    Как изменяются массовое число и заряд атома изотопа а) при последовательном испускании а-частицы и двух р -частиц б) при поглощении ядром двух протонов и испускании двух нейтронов  [c.52]

    Информацию о строении вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений, магнитных и электрических взаимодействий, механических, термических, электрических и других характеристик веществ. [c.140]

    М Атомные спектры. Экспериментально квантование энергии атомов обнаруживается в их спектрах поглощения и испускания. Атомные спектры имеют линейчатый характер (рис. 6). Возникно- [c.15]

    При облучении светом элементов в парообразном состоянии наблюдается обратная картина свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения. [c.102]

Рис. 88. Спектр испускания мо лекул азота в близкой ультрафиолетовой области Рис. 88. <a href="/info/2750">Спектр испускания</a> мо лекул азота в близкой ультрафиолетовой области
    В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) 5 высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов — радиоактивный ряд, включающий радий и полоний (см. разд. Порядковый номер ) и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория. [c.164]


    Радиоактивностью называют самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер. [c.48]

    Первыми двумя законами сохранения, установленными в науке, были законы сохранения массы и энергии. В физических законах движения, кроме того, часто используется закон сохранения импульса (количества, движения). В ядерных реакциях может происходить взаимопревращение массы и энергии, но их сумма обязательно должна сохраняться. Ядерная энергия получается только за счет исчезновения массы соотношение между массой и энергией было установлено Эйнштейном и носит его имя. Согласно соотношению Эйнштейна, = тс , где -энергия, т - соответствующая ей масса, а с - скорость света. В ядерных реакциях также происходит сохранение заряда. Когда ядро изотопа углерода-14 распадается с образованием ядра азота-14, это сопровождается испусканием электрона (происходит так называемый бета-распад) [c.96]

    Как изменятся массовое число и заряд атома при испускании одной а-частицы и двух р--час-тиц а) заряд уменьшится на 2, а массовое число — на 4 б) заряд увеличится на 2, а массовое число [c.52]

    Б. Спектроскопические методы. На первый взгляд кажется, что оптическая спектроскопия является идеальным методом для изучения неустойчивых промежуточных продуктов, однако во многих случаях применение этого метода встречает существенные трудности. Причина заключается в малой концентрации присутствующих промежуточных веществ, а также в сложности выделения спектров промежуточных веществ (эмиссионных или абсорбционных) из спектров других присутствующих веществ. Тем не менее имеется большое число примеров успешного использования этих методов. Так, спектры испускания возбужденных радикалов, атомов и ионов наблюдались в случае тлеющих и дуговых разрядов, а также во взрывных реакциях и пламенах. В частности, при электрически возбуждаемом излучении [16, 17] были идентифицированы радикалы Сг, СН, Н8, 82, О, СК, КН, ОН, PH, HgH. Подобным же образом в пламенах и взрывах [18] наблюдались, в частности, радикалы С2, СН, ОН, КН, 80, Н, С1, СНО. Однако в обоих этих примерах наблюдаемые спектры испускания могут дать сведения только об относительном количестве возбужденных радикалов и ничего не говорят о типе или количестве радикалов, присутствующих в невозбужденных состояниях и не способных к излучению. [c.96]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    Время жизни при испускании инфракрасного света составляет 10" сек. [c.342]

    Точно так же, если молекула, находящаяся на одном пз возбужден -ных электронных уровней, теряет энергию благодаря испусканию света, переход приводит к излучению фотона с определенной частотой. [c.293]

    Определение массовой доли натрия основано на методе определения мощности светового потока спектра испускания атомов натрия, возникающего при введении раствора соли натрия в пламя мощность светового потока зависит от количества натрия в исследуемой пробе. Измерения проводят по желтому дублету натрия в исследуемой пробе (Х = = 589,6 и 589,0 нм). Расхождение между двумя параллельными определениями должно быть не более 0,003% абс. [c.77]

    Распад молекулы только в результате увеличения ее вращательной энер-гии установлен для HgH. В линейчато-полосатом спектре испускания НеН, [c.81]

    При электронных ударах квантовые запреты не соблюдаются так строго, как при поглощении н испускании света. [c.241]

    Источниками излучений большой энергии, используемыми в радиационной химии, могут служить отходы, получаемые при работе ядерного реактора. При делении каждого ядра образуются два новых ядра с приблизительно равными массами. Эти продукты образуют группу изотопов с массовыми числами от 72 до 162. Атомы продуктов деления нестабильны в процессе р-распада идет превращение одного химического элемента в другой. В ряде случаев образующееся после испускания Р-частицы ядро находится в возбужденном состоянии переход такого ядра в нормальное или основное состояние сопровождается излучением одного или нескольких у Квантов.  [c.257]


    Распад всегда сопровождается испусканием антинейтрино. [c.324]

    Испускание кванта света молекулой продукта в возбужденном состоянии происходит только в присутствии полярного вещества Y. [c.106]

    Испусканием а-частицы до° ТН превращается в радий, причем из 1 г тория образуется в течение года 8,2 10 г радия. Сколько а-частиц теряет ежесекундно 1 г тория Вычислить константу распада. ТН и период его полураспада. [c.64]

    Так как гамма-лучи не имеют ни заряда, ни массы, их испускание не меняет баланс по массе или заряду в ядерном уравнении. [c.325]

    В пользу многостадийного воспламенения несгоревшей порции рабочей смеси говорит тот факт, что в спектре испускания пла- [c.68]

    Возникал вопрос, верна ли теория Планка или же она создана только для объяснения одного-единственного явления Наука наводнена теориями, объясняющими только то явление, ради которого они созданы, и неспособными правильно объяснить другие явления. Возможно, представление об испускании электромагнитной энергии определенными порциями, пропорциональными частоте излучения, было еще одним таким же способом объяснить изолированное явление  [c.338]

    Какое из следующих утверждений относительно теории атома водорода Бора неверно а) Теория успешно объясняет-наблюдаемые спектры испускания и поглощения атомарного водорода, б) Теория требует, чтобы энергия электрона в атоме водорода была пропорциональна его скорости, в) Теория требует, чтобы энергия электрона в атоме водорода принимала лишь определенные дискретные значения, г) Теория требует, чтобы расстояние электрона от ядра в атоме водорода имело только определенные дискретные значения. [c.379]

    В 1905 г. Альберт Эйнштейн (1879-1955) привел еще один пример квантования энергии, когда он сумел успешно объяснить фотоэлектрический эффект. Так называется явление выбивания электронов из поверхности металлов под действием света. (Фотоэлектрический эффект используется в фотоэлементах, которыми оборудованы хорошо известные всем автоматы-пропускники в метро, срабатывающие в результате изменения фототока.) Важной особенностью фотоэлектрического эффекта является то, что для каждого металла существует минимальная частота света, ниже которой не происходит испускания электронов независимо от того, насколько велика интенсивность пучка света. Классическая физика была не в состоянии объяснить, почему самые интенсивные пучки красного света не могут выбивать электроны из некоторых металлов, хотя это достигается очень слабыми пучками синего света. [c.338]

    Вторая часть теории Бора основывалась на постулате, что поглощение и испускание энергии атомом происходят при переходах электрона из одного квантового состояния в другое. Энергия, испускаемая, когда электрон переходит из состояния 2 в более низкое квантовое состояние равна разности между энергиями этих двух состояний  [c.348]

    Становится понятным, почему свет поглощается и излучается только с характерными волновыми числами. Поглощение света или нагревание газа повыщает энергию электрона и заставляет его перейти на более высокую орбиту. Затем возбужденный атом водорода может испустить энергию в виде кванта света, когда электрон возвращается на нижележащую орбиту. Такое испускание энергии приводит к появлению различных серий спектральных линий  [c.349]

    Вы, возможно, считаете, что атомы вообще не меняются атом алюминия всегда остается алюминием, а железа - железом. В основном это так. Однако некоторые атомы, имеющие неустойчивые ядра, все-таки иногда изменяются при этом они превращаются в атомы других элементов (имеющих другие ядра) обычно с испусканием дополнительных частиц и энергии, что и является собственно радиоактивностью, а сам процесс называется радиоактивным распадом. Испускаемые частицы и энергия называются ядерной радиацией или ядерным излучением. Многие преимущества и недостатки ядерных технолопш связаны именно с этими излучениями. [c.303]

    Радиоактивные элементы и их распад. Явление радиоактивности уже было кратко рассмотрено в 20. Используя понятие об изотопах, можно дать более строгое определеипе этому явлению радиоактивностью называется самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер (например, а-частиц). Радиоактпипость, проявляемая природными изотопами элементов, называется естественной р а д и о а к т 11 в и о с 1 ь ю, [c.106]

    Как было предложено Гейдоном [481, а затем доказано Уолшем [491, свет излучает возбужденная молекула углерода СО. Уолш показал, что дискретное испускание в области от 3250 до 6250 А вызывается возбужденными молекулами СО2. В работах [49а 1 сообщалось, что прп взрыве обнаружены полосатые спектры поглощения,-которые были приписаны возбунаден-ной СО. [c.396]

    В данном обзоре рассматриваются только колебания молекул. Кроме того, имеются вращательные энергетические уроври, которые также дают инфракрасное поглощение, или испускание, или частоты рассеяния в сп ктре комбинационного рассеяния. Они имеют меньшую энергию (т. е. меньшую частоту), чем колебательные уровни. Однако этя частоты часто накладываются на колебательный спектр, образуя крылья пэ обе стороны от чисто колебательной линии. Это наблюдается для образцов, находящихся в газообразном состоянии. В жидком состоянии вследствие межмолекулярного взаимодействия вращательная структура сбычно не наблюдается. [c.316]

    Ехли реакция идет в газах, находящихся под малым давлением, с участием возбужденных молекул, то возникшие активные молекулы могут дезактивироваться путем испускания света до того, как они столкнутся с реагирующими молекулами. При фотохимическом разложении аммиака квантовый выход зависит от температуры. При изменении температуры от 20° до 500° С величина у изменяется от 0,2 до 0,5. Это объясняется следующими обстоятельствами. Первичный процесс поглощения фотона сопровождается отщеплением одного из атомов водорода  [c.233]

    Распад. --Частица — электрон. р -Распаду предшествует процесс Че + р, протекающий в ядре таким обраяом, при испускании электрона заряд ядра увеличивается на единицу, а массовое число ие изменяется. Дочернее ядро — изобар исходного—принадлежит элементу, смещеино.му на одну клетку к концу периодической системы от места матсрниского элемента Э Че . [c.49]

    К оснопным в /к "Л радиоактивного распада относятся -распад, р-р а с п а д, электронный захват и спонтанное деление. Часто эти виды радиоактивного распада сопровождаются испусканием у-лучей, т. е. жесткого (с малой длиной волны) электромагаитаого излучения. [c.107]

    Наблюдавшиеся явления Ирен Кюри и Фредерик >Колно-Кю 1И о яснили тем, что под влиянием бомбардировки ядер а-части-цамн сперва образуются новые неустойчивые ядра, которые за ем распадаются с испусканием позитронов. Например, в случае ялю-миния процесс протекает в две стадии [c.110]

    При изучении радиоактивных изотопов и их последовательных превращений установлено наличие четырех естественных радиоактивных рядов. В соответствии с названиями первичных изотопов они получили наименования уранового, актиноуранового, ториеаого и нептуниевого рядов. За первичным изотопом каждого ряда, представляющим собой сравнительно устойчивый, т. е. медленно распадающийся изотоп, следует ряд изотопов, в котором каждый последующий член ряда образуется из предыдущего в результате испускания им а- или -частиц. Первые три ряда заканчиваются устойчивыми, нерадиоактивными изотс)-пами свинца, а четвертый изотопом висмута. [c.64]

    Г1 [КОг-] , где т] — вероятность испускания кванта света в расчете на 1 акт К02-+К0г-. При введении ингибитора в окисляющийся углеводород скорость реакций КОг--гКОг- уменьщается, иоэтому интенсивность хемилюминесценции снижается. Зависимость I от [1пН], когда практически все цепи обрывает ингибитор, описывается формулой [c.106]

    Квантование энергии. Электромагнитные волны и скорость света, длина волны, частота и волновое число. Электромагнитный спектр. Излучение абсолютно черного тела. Кванты и постоянная Планка. Фотоэлектрический эффект и фотоны. Спектры поглощения и испускания. Серии Лаймана, Баль.мера и Пашсна уравнение Рндберга. [c.328]

    Если вещество нагрето до высокой температуры, его атомы или молекулы испускают свет определенных частот. Например, атомы раск ленного водорода испускают красный цвет. Атом, обладающий избыточной энергией (например, атом раскаленного вешества), испускает свет, спектр которого носит название спектра испускания. На рис. 8-8 показана часть спектра испускания атомарного водорода. Отметим, что в спектре испускания вещества присутствуют точно те же линии, что и в его спектре поглощения. [c.340]

    При более внимательном рассмотрении спектра испускания водорода, изображенного на рис. 8-8, можно различить в нем три отдельные группы линий. Эти три группы, или серии, линий пoлyчиJШ каждая свое особое название по имени открывших их ученых. Серия, начинающаяся при 82259 см и продолжающаяся до 109678 см располагается в ультрафиолетовой части спектра и носит название серии Лаймана. Серия, начинающаяся при 15 233 см и продолжающаяся до 27 420 см занимает большую часть видимой области и небольшую часть ультрафиолетовой области спектра и называется серией Бальмера. Линии, расположенные между 5332 и 12 186 см в инфракрасной области спектра, составляют серию Пашена. На рис. 8-9 показаны бальмеровские серии спектра атомарного водорода, полученные от некоторых звезд. [c.340]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]


Смотреть страницы где упоминается термин Испускание: [c.470]    [c.470]    [c.470]    [c.75]    [c.49]    [c.49]    [c.57]    [c.64]    [c.110]   
Смотреть главы в:

Химическое разделение и измерение теория и практика аналитической химии -> Испускание

Молекулярная фотохимия -> Испускание

Применение поглощения и испускания рентгеновских лучей -> Испускание


Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.613 ]

Радиохимия (1972) -- [ c.0 ]

Молекулярная фотохимия (1967) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте