Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протоны диссоциация

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]


    Нет никаких причин, по которым нельзя было бы описывать эту реакцию при помощи константы кислотно-основного равновесия, как это сделано для кислот в табл. 5-3. Согласно теории Бренстеда-Лаури, ион аммония NH4 представляет собой сопряженную кислоту основания NH3. Совсем не обязательно, чтобы в кислотно-основной паре нейтральной была именно кислота, а основание несло на себе электрический заряд, как это имеет место в парах НС1/С1 и H N/ N . Ион NH можно отнести к кислотам, точно так же как НС1 или H N, и хотя эта кислота слабее, чем НС1, но она оказывается сильнее, чем H N. Таким образом, реакцию аммиака с протоном можно рассматривать как диссоциацию кислоты  [c.221]

    Рассмотрим простейшую из возможный молекулярных систем — молекулярный ион водорода Нг. В нем один электрон двигается в поле двух ядер — протонов. Эта частица получается при облучении молекул водорода Н электронами. Расстояние между ядрами в Н2 равно 0,106 нм, а энергия связи, т. е. диссоциации на атом Н и ион Н" , составляет 255,7 кДж/моль. Таким образом, эта частица весьма прочная. [c.43]

    На Первой конференции по химии и применению фосфорорганических соединений мы сообщили о разработанном в лаборатории фосфорорганических соединений ИНЭОС потенциометрическом методе определения положения таутомерного равновесия [1]. Представляло интерес распространение этого метода на апротонные среды. В отличие от проводящих протолитических сред, в которых прототропное таутомерное равновесие складывается, как равновесие таутомерных форм, как равновесие кислот или оснований с соответствующими ионами, в апротонных средах с низкой диэлектрической постоянной в равновесии с молекулярными таутомерными формами находятся ионные пары. В случае таутомерии веществ кислотного характера ионная пара образуется общим обеим таутомерным формам анионом и катионом основания — переносчика протона. Диссоциация ионных пар на свободные ионы в мало полярных средах весьма незначительна и не оказывает влияния на положение таутомерного равновесия. Общую схему таутомерного равновесия в апротонных средах с низкой диэлектрической постоянной можно, по всем данным, выразить следующим образом  [c.65]

    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]


    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Полярные протонные растворители легко сольватируют как анионы, так и катионы. Неорганические катионы взаимодействуют со свободными электронными парами, тогда как анионы сольватируются путем образования водородных связей. Крупные четвертичные аммониевые ионы не сольватируются [37] или по крайней мере сольватируются не специфично, т. е. сильного непосредственного взаимодействия с растворителем не существует. В этих растворителях имеет место высокая степень диссоциации на свободные сольватированные ионы. Однако многие анионы обладают относительно низкой реакционноспособностью (нуклеофильностью) из-за сильного экранирования сольватной оболочкой. [c.18]

    Процесс протонной диссоциации усложняется образованием димеров (и возможно высших полимеров)  [c.64]

    Показано наличие полимеризации молекул ортофосфорной кислоты, сопровождающейся усилением протонной диссоциации и вязкостно-реологических характеристик [c.6]

    Некоторые растворители (например, вода, спирты, жидкий аммиак) проявляют амфотерные свойства, что выражается в их способности как отдавать, так и присоединять протоны. Диссоциация растворителя наступает вследствие его амфотерности и протекает но реакции  [c.30]

    В кислой среде (рН<7) вследствие избытка ионов водорода (протонов) диссоциация карбоксильных групп подавлена. Свободные аминогруппы легко присоединяют к себе имеющиеся в избытке протоны и переходят в протонированную форму  [c.9]

    Все перечисленные ранее соединения, испытанные в качестве катализаторов для конденсации фенола с ацетоном, обладают одним общим свойством они либо прямо дают протоны при диссоциации, либо могут образовывать комплексы и освобождать протоны. [c.65]

    Аномально высокая подвижность иона гидроксония, правда, меньшая, чем в водных растворах, сохраняется в метиловом и этиловом спиртах, но в других растворителях не наблюдается. Отсюда следует, что сольватирован-ный протон в неводных растворителях переносит электричество обычным путем, т. е. путем непосредственного движения по направлению к катоду, и лишь в спиртовых растворах протон получает возможность более выгодного движения (цепной, или эстафетный механизм). По-видимому, ионизация (диссоциация), например, хлористого водорода в спиртовом растворе происходит по уравнению [c.442]

    В растворе устанавливается равновесие, константа которого раина отношению истинных термодинамических констант диссоциации или, что то же самое, отношению термодинамических констант диссоциации Запишем реакции диссоциации воды и диссоциации гидроксония. В обоих случаях диссоциация протекает с участием одной молекулы воды, присоединяющей протон  [c.477]

    На рис. 108 схематически изображена часть молекулы гидроксида Э(ОН)п, составленная из л-зарядного иона иона кислорода и иона водорода (протона) Н+. Диссоциация этой части молекулы на ионы может происходить либо с разрывом связи Э—О (в результате чего отщепляется ион 0Н ), либо с разрывом связи О—Н (что приводит к отщеплению иона Н+) в нервом случае гидроксид будет проявлять свойства основания, во втором — свойства кислоты. [c.370]


    Разграничение кислот на сильные и слабые несколько условно. Ионизация НС1 представляет собой не просто ее диссоциацию, это скорее результат успещной конкуренции между молекулами HjO и ионами С1 за соединение с протонами Н  [c.215]

    Уравнение (XVIII, 35) показывает, что при диссоциации уксусной кислоты протекают два противоположных процесса. С одной стороны, уксусная кислота стремится отдать протон воде, а с другой — ион Н3О+ стремится вернуть протон иону СНзСОО. Константа показывает, во сколько раз первая кислота сильнее второй. Именно это отношение и интересует нас в первую очередь при оценке силы кислот. [c.475]

    Трикарбоновые кислоты образуют устойчивые растворимые комплексы с ионами кальция. Наиболее устойчив цитратный комплекс с константой устойчивости 7,94 O при ионной силе раствора, равной нулю. Чтобы можно было разделить эффекты, обусловленные комплексообразованием и вызванные адсорбцией трикарбонатных ионов на поверхности кристалла, необходимо рассчитать концентрации каждой ионной частицы в растворе. Эти расчеты проводили, как описано в работе [14], исходя из баланса масс, суммарной электронейтральности частиц, образующихся при протонной диссоциации, и констант ассоциации ионных пар фосфатов и трикарбоксилатов кальция и магния [15] методом последовательных приближений при ионной силе, равной 1. Коэффициенты активности ионов с валентностью г рассчитывали по уравнению Дебая — Хюккеля, записанному Дейвисом в виде [16] [c.21]

    Протоны, имеющиеся в воде и вносимые кислотой, неразличимы. При образовании каждого гидроксидного иона в результате диссоциации воды образуется также один ион водорода. Следовательно, концентрация ионов водорода, обусловленная только диссоциацией воды, равна [c.469]

    Кристенсен и Изэт [34] указали, что метод первоначального наклона кривой титрования не принимает в расчет того факта, что различие температур титранта и титруемого раствора непрерывно изменяется во время титрования, и вывели уравнение, дающее возможность более точно рассчитывать теплоты реакций по данным термометрического титрования. Этот метод использован для исследования теплот протонной диссоциации рибону-клеотидов. [c.135]

    Ацетатный ион, СН3СОО , часто записывают просто как Ас , а формулу недиссоциированной молекулы уксусной кислоты заменяют символом НАс, как будто речь идет о простой неорганической кислоте. (Наряду с этим также используются обозначения ОАс " и НОАс, указывающие, что уксусная кислота относится к оксикислотам, в которых диссоциирующий протон присоединен к атому кислорода.) Диссоциация НАс неполная [c.230]

    К сожалению, при изучении реакций комплексообразования нередко имеет место дополнительное осложнение, так как лиганд F может присоединиться в различных положениях и, кроме того, во многих случаях способен к протонной диссоциации, причем только некоторые из протонированных форм F прочно связываются с центральным атомом металла. Все это, конечно, затрудняет исследование условий применимости уравнения(131). Несколько реакций комплексообразования обсуждается в работе Эйгена и Де Майера ([3], стр. 1041). Однако эти авторы рассматривали только случай п 1, т.е. когда алло-стерический эффект не проявляется. Для того чтобы возник аллосте-рический эффект, необходимо связывание центрального атома металла по крайней мере с двумя лигандами. [c.412]

    Приведенных примеров достаточно, чтобы описать характер заснувших полимеров. Они либо совсем не участвуют в реакции роста цепи, либо растут очень медленно. Однако они не являются мертвыми. Их превращение в живущие полимеры происходит в результате реакций, обычно не связанных с ростом цепи, например переноса протона, диссоциации ионных пар на свободные ионы или, в более общей форме, превращения ассоциированных форм в диссоциированные и т. д. Последний пример (анионная полимеризация Л1етилметакрилата) представляет интересный случай, когда превращение связано с реакцией роста. При этом предполагается, что в такой системе возможно по крайней мере два различных типа реакции роста. При нзотактическом расположении звеньев открытой цепи сохраняется характер живущего полимера, в то время как при снндиотактическом расположении цепь превращается в заснувшую, которая вновь оживает , когда в результате медленного присоединения мономера к этой частице образуется изотактическая последовательность мономерных звеньев. [c.33]

    Уксусная кислота является дифференцирующим, а аммиак, так же как и вода, нивелирующим растворителем ио отношению к кислотам. Их действие на диссоциацию оснований будет обратным. В ап-ротных растворителях, не сиособны отдавать или воспринимать протон, например в бензоле, кислоты и основания будут находиться в недиссоциированном состоянии. Если, одиако, оии присутствуют совместно, то между ними возможно кислотно-основное взаимодействие. [c.71]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Так как собственно химическое превращение HaS в общем состоит в передаче протона, то наиболее вероятно осуществление режима мгновенной реакции. Единственное известное автору исключение составляет абсорбция растворами высококарбонизиро-ванного амина, где диссоциация сероводорода вызывает обратное превращение карбамата в бикарбонат, так что медленной стадией снова будет реакция (IV). В некоторых аспектах этот вопрос обсуждался Астарита, Джойя и Бальзано [2]. [c.157]

    Образование, как правило, олефинов в этих первичных стохиомет-рических реакциях диссоциации дает возможность подойти к концепции, которая аналогична теории, объясняющей низкотемпературные реакции присоединения над кислыми катализаторами, а именно, объяснить образование иона карбония простым присоединением протона (Н+)к олефину. Прежде всего, необходимо рассмотреть механизм и энергетику этой реакции [c.117]

    Ясно, что комплекс со структурой этого типа должен показать значительное изменение в спектрах поглощения. Далее разрушение облака я-электронов должно быть процессом, требующим значительной энергии актипатщи. Образование комплексов с системой типа хлористый водород— хлористый алюмпний (XXII) включает полный перенос протона в кольцо. Такой комплекс должен проявлять заметную проводимость, а так как образоваиие и диссоциация этих комплексов — процессы обратимые, то [c.401]

    Кислота и основание, входящие в это уравнение, называются сопряженными. Как будет показано ниже, протоны могут отщепляться как от частиц, несущих положительный заряд, так и от нейтральных частиц и даже от частиц, заряженных отрицательно (например, при многоступенчатой диссоциации кислот). Соэтветственио может быть различным и заряд основания. [c.469]

    Величина /(снзСоон называется истинной термодинамической константой диссоциации указанной кислоты на свободный протон и основание, или константой кислотности ее ни в коем случае нельзя смешивать с термодинамической константой рав-нэвесия уксусной кислоты с гидроксонием и основанием. [c.474]

    Располагая истинными термодинамическими константами диссоциации, можно легко и просто находить константы, характеризующие различные ионные равновесия. Рассмотрим, например, диссоциацию воды, состоящую в том, что одна молекула отдает протон, а другая этот протон присоединяет. Таким обра- [c.476]

    Важный класс неорганических соединений, выделяемый по функциональным признакам, составляют кислоты. С позиций теории электролитической диссоциации к кпслогам относятся вещества, способные диссоциировать в растворе с образованием ионов водорода. С точки зрения протолити геской (протонной) теории кислот и оснований кислотами называются вещества, которые могут быть донорами протонов, т. е. способны отдавать ион водорода. [c.32]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    Согласно классическому определению Аррениуса, кислота представляет собой вещество, которое при добавлении к воде повыщает в ней концентрацию ионов водорода, [Н" ], а основание-вещество, повышающее в воде концентрацию гидроксидных ионов, [ОН ]. 1 моль различных кислот может высвобождать при полной диссоциации 1, 2 или 3 моля ионов Н . Грамм-эквивалентом кислоты называется такое ее количество в граммах, которое способно при полной диссоциации высвободить 1 моль протонов Н" , поэтому грамм-эквив алент такой кислоты, как Н3РО4, равен одной трети ее молекулярной массы. Точно так же если какое-либо основание способно высвобождать при полной диссоциации в растворе 2 моля ионов ОН , как, например, Са(ОН)2, то грамм-эквивалент такого основания равен половине его молекулярной массы. [c.100]

    Муравьиную кислоту, НСООН, можно получить перегонкой из муравьев. Для полной нейтрализации 4,32 мл водного раствора муравьиной кислоты понадобилось 3,72 мл 0,0173 н. раствора NaOH. Какое количество муравьиной кислоты (в граммах) содержалось в этом растворе Воспользуйтесь предположением, что при диссоциации муравьиной кислоты от каждой ее молекулы отщепляется только 1 протон. [c.109]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Эти избыточные гидроксидные ионы нарущают равновесие диссоциации воды и соединяются с протонами, всегда имеющимися в чистой воде  [c.220]

    Однако теперь в растворе имеются два источника ацетатных ионов КаАс и НАс. Концентрация ацетатных ионов, поставляемых ацетатом натрия, совпадает с молярной концентрацией этой соли с , поскольку соль диссоциирует полностью. Концентрация ацетатных ионов, образуемых уксусной кислотой, совпадает с концентрацией водородных ионов в растворе, так как при диссоциации каждой молекулы НАс наряду с ионом Ас образуется 1 протон. Следовательно, полная концентрация ацетатных ионов в растворе [c.237]

    Но она может также терять второй протон, однако при этом ведет себя как слабая кислота и обладает вполне измеримой константой диссоциации. Кислоты, способные высвобождать более одного протона, называют многоосновными (полипротонными) кислотами. [c.244]

    Но можно воспользоваться еше и другим упрощением. При диссоциации многоосновной кислоты, например угольной кислоты, Н2СО3, большая часть протонов образуется в результате первичной диссоциации  [c.246]

    Некоторые кислоты способны при последовательной диссоциации высвобождать более одного протона. Они называются многоосновными (полипротонными) кислотами. Если константы последовательных диссоциаций К , К2 и т.д. отличаются друг от друга множителем порядка 10 или 10 , такие последовательные диссоциации могут рассматриваться как независимые явления. [c.258]


Смотреть страницы где упоминается термин Протоны диссоциация: [c.179]    [c.26]    [c.179]    [c.156]    [c.46]    [c.470]    [c.475]    [c.476]    [c.220]    [c.468]   
Биохимия Том 3 (1980) -- [ c.35 ]




ПОИСК







© 2025 chem21.info Реклама на сайте