Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение азота минералах

    Разложение по Кьельдалю для определения азота в породах и силикатных минералах производилось при помощи концентрированной серной кислоты в запаянных пробирках. В этом случае температура разложения может быть значительно выше, чем при обычном методе. Время полного выделения азота зависит от температуры разложения. При анализе силикатных минералов и изверженных пород минимальная продолжительность разложения составляет 90 мин при температуре 420° для осадочных пород продолжительность разложения может быть уменьшена до 60 мин. Метод является быстрым и точным. Его точность значительно выше, чем при разложении в обычных приборах Кьельдаля, так как в последнем случае ошибки могут возникать в результате толчков при кипении, загрязнения аммиаком из воздуха и минеральных веществ, оседающих на стенках колбы, а также в некоторых случаях, например при анализе слюды, в результате прилипания минерала к стенкам колбы выше поверхности серной кислоты и вследствие этого неполного разложения пробы. [c.161]


    Для определения азота в урановых минералах Гиллебранд растворял пробу в разбавленной (1 6) серной кислоте при продолжительном кипячении (при 100° С) или смешивал минерал с карбонатом калия-иатрия в фарфоровой лодочке (которую помещал в открытый с обоих концов цилиндр из платиновой фольги) и нагревал в трубке для сжигания, как при опре 1 елении общего азота. [c.523]

    Искомую составную часть взвешивают в другой форме чем та, в которой желательно выразить результат проведенного определения, например определение фосфора заканчивают взвешиванием прокаленного осадка Mg2P207 или, определяя кремний в стали, заканчивают определение также взвешиванием 5102, как при анализе минерала, но результат здесь должен быть выражен в виде процентного содержания элемента (31). Иногда взвешиваемое вещество совсем не содержит того элемента, который определяют. Так, при определении азота в соли аммония иногда осаждают аммоний в виде (КН4)зР1С15, прокаливанием этого соединения выделяют платину, которую и взвешивают. По массе платины рассчитывают процентное содержание азота в анализируемой соли. [c.460]

    Произ-во Ж. у. экономичнее (на 20%, иногда на 35 Ю%) произ-ва твердых минер, удобрений, т. к. отпадают такие технол. операции, как переработка, напр., NH3 в азотную к-ту, аммиачную селитру или карбамид либо сернокислотное разложение фосфатов, а также физ.-мех. операции сушка, гранулирование, сортировка гранул и кондиционирование продукта. Ж. у. вносят в псчву на определенную глубину (во избежание потерь азота при наличии своб. аммиака) или разбрызгивают по пов-сти поля спец. машинами. Расходы на транспортирование, хранение и внесение в почву Ж. у., несмотря на нек-рые трудности (особенно в случае азотсодержащих удобрений), также меньше (на 10-30%) по сравнению с твердыми удобрениями. По агрохим. эффективности оба типа удобрений совершенно равноценны, а на сероземных и черноземных почвах, имеющих щелочную р-цню, Ж. у. повышают урожайность с.-х. культур в большей степени, чем твердые удобрения. См, также Комплексные удобрения. [c.149]

    Несслера реактив — раствор K2[Hgl4] в КОН, при взаимодействии с аммиаком, солями аммония образует красно-коричневый осадок. Применяют для обнаружения и определения аммиака, азота (после переведения в аммиачную форму). Нефелин — породообразующий минерал, алюмосиликат калия и натрия ортокрем-ниевон кислоты (Na, K)AlSi04. Используют в производстве алюминия, соды, в стекольной, кожевенной промышленности. В больших количествах получается в качестве отхода при добыче апатита. [c.88]


    Однако было выдвинуто предположение, что первоначально соединения кремния играли важную и, по всей вероятности, необходимую роль в происхождении жизни. Гамов [5] отмечал, что переход от неживой материи мог протекать очень постепенно. Опарин [6] выдвинул постулат, согласно которому жизнь возникла посредством ассоциации простых, встречающихся в природе углеродных соединений с неорганическими веществами в коллоидной форме. Бернал [7] предположил, что коллоидные силикаты, вероятно, играли каталитическую роль в процессах формирования сложных органических молеку/ из простых молекул. Он допускал также, что первоначальная атмосфера Земли (до возникновения жизни) должна была состоять нз таких водородных соединений, как метан, аммиак, сероводород и водяные пары. Как показал Миллер [8], аминокислоты могут образовываться из метана, азота и водяного пара под влиянием электрических разрядов, поэтому могли существовать разнообразные органические соединения. Бернал высказал предположение, что обогащение простых органических молекул могло происходить при их адсорбции на коллоидных глинистых минералах, имеющих очень больщое значение удельной поверхностн и сродство по отношению к органическим веществам. Он указал, что небольшие по размеру молекулы, присоединенные к поверхности глины, способны удерживаться на ней не беспорядочно, а в определенных положениях как по отношению к поверхности глины, так и друг к другу. Таким образом, вследствие упорядоченного расположения эти молекулы могут взаимодействовать между собой с образованием более сложных соединений, особенно в том случае, когда осуществляется подвод энергии за счет падающего на поверхность света. Согласно Берналу, вначале могло происходить формирование асимметричных молекул, которые характерны для живых организмов. Это могло осуществляться путем более предпочтительной попарной адсорбции асимметричных молекул на поверхности кварца, так как кварц — единственный общеизвестный минерал, обладающий асимметричной структурой. [c.1006]

    Азот. Определение аниона ЫОГ. Дифениламин (СвН5)МН в концентрированной серной кислоте образует с нитратами органический краситель ярко-синего цвета. Для выполнения реакции на часовое стекло помещают три-четыре капли раствора дифениламина, добавляют две-три капли концентрированной Н2504 и столько же водного раствора минерала. [c.139]

    При изучении солнечного спектра в 1868 г. исследователи обнаружили существование на Солнце неизвестного элемента, который был назван гелием. В 1889 г. гелий был выделен при нагревании минерала клевеита, однако это открытие тогда не связали с первым. В 1894 г. Рэлей обратил внимание на различие плотностей химически полученного и атмосферного азота. Химически азот получали из различных оксидов азота, аммиака или других соединений. Атмосферный азот выделяли из воздуха после удаления из последнего кисло--рода, углекислого газа и водяного пара. Различие плотностей было небольшим (в третьей значащей цифре после запятой) 1,2506-10- г/см для химически полученного азота и 1,2572-10 г/см для атмосферного азота, но это наблюдение явилось очень важным и привело к открытию Рэлеем и Рамзаем благородных газов. Их спор с другими учеными по поводу отношения теплоемкостей благородных газов ( p v = 1,66) позволил установить их одноатом-ность и показал, как много значит определение плотности газа для его химической идентификации [1, 2]. [c.515]

    Определение остаточного азота слагается из следующих операций удаление из исследуемого материала белков, минерализация небелковых веществ при нагревании с серной кислотой и определение аммиака в полученном минера-лизате. Для определения аммиака можно воспользоваться уже знакомыми нам методами Кьельдаля или Конвея или же провести фотометрическое определение. Фотометрический метод определения остаточного азота был предложен Асселем и получил название метода Асселя. Он основан на колориметрировании желтой окраски, возникающей при добавлении реактива Несслера к содержащему аммиак ми-нерализату. Напомним, что в состав реактива Несслера входит иодистая ртуть, образующая с аммиаком комплексное соединение, окрашенное в желтый цвет. [c.235]

    Неиспользованные живым веществом запасы химически связанного азота под действием микроорганизмов непрерывно преобразовываются в формы, доступные для азотного питания растений. Так, фиксированный глинистыми минера.лами аммоний окисляется до нитратов. В определенных условиях при отсутствии свободного кислорода и наличии неиспользованного живым веществом нитрата может происходить обусловленное процессом денитрификации восстановление азота до мо.чекулярного с уходом последнего в атмосферу. [c.9]



Смотреть страницы где упоминается термин Определение азота минералах: [c.317]    [c.216]    [c.216]   
Аналитическая химия азота _1977 (1977) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота

Горные породы, минералы, определение азота

Горные породы, минералы, определение азота аммонийного

Горные породы, минералы, определение азота аммонийного, нитратного и нитритного

Горные породы, минералы, определение азота нитратного



© 2025 chem21.info Реклама на сайте