Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разнообразные органические полимеры

    Для защитного покрытия металлов используются разнообразные органические материалы смазочные масла, лаки (растворы полимеров в летучих растворителях), краски. На металл слой полимера [c.197]

    Для защитного покрытия металлов используются разнообразные органические материалы смазочные масла, лаки (растворы полимеров в летучих растворителях), краски. На металл слой полимера можно наносить и из расплава или напрессовыванием готовой пленки. [c.262]


    В качестве флокулянтов используют органические полимеры, относящиеся к различным классам, или сополимеры с разнообразными функциональными группами. Многие синтетические флокулянты имеют условные коммерческие названия, и их точный состав зачастую неизвестен или известен лишь ориентировочно. Для удобства рассмотрения синтетические ВМФ часто подразделяют на неионные, анионные и катионные соединения. [c.122]

    Разнообразные органические полимеры [c.816]

    Мембраны для микрофильтрации могут быть изготовлены из разнообразных органических (полимеры) или неорганических (керамика, металлы, стекла) материалов. [c.286]

    Для химической переработки древесина интересна своим комплексом природных органических полимеров - целлюлозы, нецеллюлозных полисахаридов, лигнина, а также разнообразных низкомолекулярных соединений - экстрактивных веществ. Ценные физические свойства, такие как большая прочность при малой плотности, низкие тепло- и электропроводность, легкость обработки, внешний вид и т.д., делают древесину незаменимым конструкционным и поделочным материалом для изготовления разнообразных изделий, необходимых в промышленности, строительстве, производстве мебели и пр. [c.5]

    Лучше всего изучены химические свойства природных высокомолекулярных соединений (целлюлозы, крахмала, белков), которые были известны за много десятков лет до появления синтетических полимеров. Наибольшее внимание уделялось химическим превращениям целлюлозы, обладающей ценными техническими свойствами и являющейся наиболее широко распространенным природным органическим полимером. Путем химических превращений целлюлозы получают ацетаты целлюлозы, применяемые для производства волокна, лаков, пленок, пластмасс нитраты целлюлозы для производства пластмасс, пленок, лаков и бездымного пороха многочисленные простые эфиры целлюлозы, имеющие весьма разнообразное применение для производства лаков, пленок, электроизоляционных материалов, в качестве отделочных средств в текстильной промышленности, а также присадок при бурении нефтяных скважин. [c.210]

    Исходный кокс является пространственным полимером и вследствие большого количества сложных и разнообразных органических радикалов имеет нерегулярную ( неупорядоченную ) структуру, т. е. с беспорядочным расположением их вокруг нормали к плоскости атомных сеток углерода. [c.131]

    В общем случае металлы более коррозионноустойчивы к фтористому водороду, чем к хлористому водороду. В качестве материала контейнеров при работе с фтористым водородом могут служить разнообразные конструкционные металлы или сплавы, в том числе стали, медь и сплавы на основе меди, никель, алюминий и платина. При эксплуатации в умеренных температурных режимах материалом для контейнеров могут служить окись алюминия, никель, сплавы, содержащие молибден и никель, платина и плотный графит. Выше 700° только платина и графит выдерживают агрессивное воздействие HF. Если некоторая коррозия допустима, то можно применять никель. Выше 1200° можно применять только графит. Кроме того, в качестве материалов контейнеров и различных коммуникаций для фтористого водорода можно использовать многие органические полимеры. Обычно применяют полиэтилен, полихлортрифторэтилен и политетрафторэтилен. Предпочитают иметь дело с первыми двумя пластиками вследствие их хорошей обрабатываемости. Полихлортрифторэтилен имеет то преимущество, что он прозрачен. Все силикатные стекла быстро корродируют под влиянием фтористого водорода. Некоторые фосфатные стекла не реагируют с фтористым водородом, однако в настоящее время ни одного из этих стекол нет в продаже. [c.337]


    Ацетилен является исходным продуктом для производства разнообразных органических веществ ацетальдегида, перерабатываемого на этиловый спирт, уксусную кислоту, бутадиен, этилацетат, -бутанол и другие продукты, а также для синтеза хлорорганических соединений (хлористый винил, хлоропрен) и других веществ (винилацетат, виниловые эфиры, акрилонит-рил и др.), используемых в качестве растворителей, мономеров, в производстве синтетических полимеров и т. д. Значительное количество ацетилена применяется для резания и сварки металлов. [c.601]

    В высушенном состоянии макросетчатые изопористые полимеры высокой степени сшивания (25—100%) обладают явной пористостью и исключительно развитой внутренней поверхностью суммарный объем пор может достигать 0,8 мл/г, а удельная внутренняя поверхность, измеренная стандартным методом тепловой десорбции аргона или азота, — значений порядка 1000—1500 м2/г [71]. Благодаря этому макросетчатые изопористые полимеры стирола обладают явно выраженной способностью сорбировать пары и газы (даже СОг), а также разнообразные органические вещества из водных растворов, что открывает широкие возможности для их использования в качестве поглотителей и сорбентов. [c.28]

    Использование способности краун-соединений увеличивать растворимость неорганических солей или щелочных металлов в органических растворителях для активации анионов. К настоящему времени получили развитие многочисленные области применения макроциклов с использованием этих свойств, включая неорганическую химию, металлургию, атомную энергетику, разнообразные органические синтезы, синтез и анализ полимеров, химические вопросы экологии, биохимию, биофизику, химию удобрений и ядохимикатов, медицину и т.д., например.  [c.205]

    В качестве высокомолекулярных флокулянтов применяют самые разнообразные химические соединения. Большинство авторов [116—118] их подразделяет на три группы неорганические полимеры природные высокомолекулярные вещества и синтетические органические полимеры. [c.117]

    Гидроксильные и алкоксигруппы на концах макромолекул полисилоксанов обладают высокой реакционной способностью, намного превосходящей активность спиртовой гидроксильной и эфирной группы. Это свойство полисилоксанов открывает широкие возможности для синтеза разнообразных полимерных кремнийорганических соединений. Свойства полисилоксанов можно модифицировать путем химического взаимодействия низкомолекулярных фракций полисилоксана с различными органическими соединениями, в том числе и с органическими полимерами. Так, полиорганосилоксаны, содержащие на концах макромолекул алкоксигруппы, вступают в реакцию переэтерификации с алкидными смолами, имеющими гидроксильные концевые группы, а также с эпоксидными полимерами. При взаимодействии алкилацетоксисиланов со спиртами в молекулы мономера можно вводить различные радикалы, содержащие функциональные группы. Пользуясь этой реакцией, можно ввести в состав полисилоксана эпоксигруппы  [c.496]

    Органические объекты имеют много хозяев . Прежде всего, это химическая и нефтехимическая промышленность, производящие продукты основного органического синтеза, включая спирты и кислоты, полимеры (в том числе пластмассы, каучуки, химические волокна), лаки, пестициды, красители, реактивы. В ведении фармацевтической промышленности — лекарственные препараты. Сельское хозяйство имеет дело с анализом почв, растений, животных тканей, пищевая промышленность, естественно, — с пищевыми продуктами. Гидрометеорологическая служба заботится об определении органических веществ в водах и воздухе. Анализ разнообразных органических веществ нужен науке органической химии, биохимии, физиологии, медицине. Комплекс биологических наук будет оказывать на органический анализ все возрастающее влияние, ставить все более сложные задачи и во многом предопределять направление развития. [c.132]

    Наполнители могут оказывать влияние на самые разнообразные свойства полимеров прочность, твердость, теплопроводность, теплостойкость, стойкость к действию агрессивных сред, диэлектрич. и фрикционные свойства и др. По происхождению наполнители делят на органические и неорганические (минеральные), по структуре — на порошкообразные, волокнистые и листовые. [c.418]

    Растворители и экстрагенты. Многие сложные эфиры хорошо растворяют ацетаты и нитраты целлюлозы, синтетические полимеры, природные масла и другие разнообразные органические вещества. Вследствие этого сложные эфиры приобрели важное значение как растворители в различных отраслях промышленности. Естественно, что для указанной цели используют сложные эфиры более дешевых и доступных кислот и спиртов, прежде всего уксусной кислоты и низших спиртов. Все они представляют собой бесцветные жидкости, мало растворимые в воде и обладающие фруктовым запахом. Их недостатком являются значительная горючесть и взрывоопасность. [c.263]


    Благодаря особому сочетанию их свойств аллиловые полимеры зсе в большей степени привлекают к себе внимание исследователей. Изучаются полимеры на основе разнообразных органических и даже неорганических кислот. Наличие трех двойных связей обусловливает более густую пространственную связь и более высокую теплостойкость. [c.348]

    Радиационная химия в последнее десятилетие бурно развивается. Наряду с попытками изучения механизма и создания теории радиационно-химических процессов, все расширяется круг исследуемых объектов и реакций, вызываемых действием ядерных излучений на разнообразные системы. Изучение радиационной устойчивости материалов и сред, применяемых в атомной технике, и поиски эффективных химических процессов, инициируемых действием излучений, для потенциального промышленного применения существенно расширили за последние годы круг объектов, рассматриваемых радиационной химией. Осо-бенно это относится к органическим полимерам и биополимерам. [c.5]

    Начаты работы по применению зонной плавки для разделения изотопов. Широко применяется зонная плавка для очистки самых разнообразных органических веществ парафиновых, ароматических, ферментов, антибиотиков, витаминов и т. п. Едва ли не главную роль в этом разделе будет играть применение зонной плавки (вернее сказать, кристаллизационных методов) для очистки мономеров, так как известно, что чем чище исходный мономер, тем более высококачественный (с лучшими физико-химическими параметрами) и более стабильный полимер может быть получен. [c.5]

    Структура органических полимеров чрезвычайно разнообразна, и в принципе можно синтезировать иониты с самыми различными функциональными группами, различными пористостью и стабильностью [226]. [c.231]

    Направления протекания реакций пиролитического разложения органических полимеров настолько разнообразны и сложны, что делать какие-либо обобщения на этот счет практически не имеет смысла. Обычно рассматривают два механизма деструкции распад макромолекул по закону случая и их деполимеризацию. При этом предполагается, что если существует возможность для резонансной стабилизации промежуточных продуктов распада, то деполимеризация цепей более вероятна. Обширные исследования Мадорского, Уолла и их сотрудников также привели к интересным выводам относительно реакций разложения каучуков, галогенсодержащих полимеров, структурированных полимеров и полиами-дов. Изолированные аллильные группы, разветвления и галогенсодержащие или кислородсодержащие соединения распадаются легче, чем углеводороды с ароматическими группами. Нестойкость таких соединений объясняется образованием в процессе распада продуктов, содержащих пятичленные или шестичленные циклы, отщеплением атома водорода, обусловленным электроотрицательностью соседних с ним атомов или групп, или резонансной стабилизацией за счет расположенных по соседству групп. Замещение подвижных атомов водорода на более устойчивые атомы и группы (например, фтор, метильная, фенильная группа) открывает весьма эффективные пути повышения пиролитической стабильности. Реакции, которые приводят к образованию сопряженных двойных связей в цепи (например, конденсация нитрильных групп в полиакри-лонитриле или отщепление галоидоводородов от галогенированных полимеров), также повышают устойчивость полимеров. Кроме того, полимерные вещества могут разлагаться, отщепляя боковые группы, структурироваться, особенно под влиянием кислорода, или претерпевать перегруппировки с образованием более или менее стабильных структур по сравнению с исходным веществом. [c.23]

    Твердые антифрикционные пластики, рассматриваемые в этой главе, представляют собой органические полимеры. В настоящее время известно множество разнообразных полимерных [c.237]

    Несмотря на то, что количественное окисление пробы достигается только за счет твердого окислителя, без введения газообразного кислорода, на приборе можно успешно анализировать разнообразные органические и элементоорганические соединения. Использование сожжения в замкнутой системе и достаточное количество окислителя, добавляемого к пробе, гарантируют количественное окисление пробы. Многолетний опыт использования этого прибора подтвердил пригодность его для анализа бор-, фтор-, кремний-, фосфор- и металлорганических соединений, без каких-либо изменений в системе сожжения. Однако анализ трудносжигаемых соединений, полимеров, углей и графитов на приборе затруднен. [c.55]

    Довольно однороднопористые углеродные адсорбенты с более высокой s (до л 1000 м /г — молекулярноситовые угли) получают обычно термическим разложением органических полимеров [48]. Отложением пироуглерода на таких адсорбентах можно улучшить их однородность, устранив самые тонкие поры. На карбохромах, карбопаках и молекулярноситовых углях осуществлено разделение множества разнообразных смесей. ГТС, карбохромы, карбопаки и молекулярноситовые угли с успехом применяют и как накопители органических примесей из атмосферы, из выдыхаемых газов, из воздуха производственных помещений, а также летучих веществ, выделяющихся из различных полимеров, в частности из строительных полимеров [49]. [c.23]

    Неорганические гетерополимеры очень многочисленны. Они принадлежат к разным классам соединений и их свойства очень разнообразны. Мы хорошо знаем свойства органических полимеров эластичные каучуки и резины, прочные стекла и лаковые покрытия, хрупкие смолы, гибкие пленки и волокна, вязкие клеи. Такие же свойства имеют и неорганические полимеры. Кварц, алмаз и корунд обладают хрупкостью и твердостью, пластическая сера и селен — эластичностью, асбест — волокнистостью, тальк, цементы, замазки — пластичностью и т. д. Чем же объяснить столь широкий диапазон свойств высокомолекулярных соединений Мы уже говорили, что их макромолекулы отличаются разной степенью гибкости и подвижности, и межмолекулярное взаимодействие играет здесь очень существенную роль. Эластичность и прочность, температура плавления и размягчения и другие свойства, определяющие условия использования полимерного материала, зависят от гибкости, размеров и характера взаимодействия макромолекул. Межмолекулярное взаимодействие ограничивает подвижность макромолекул. Оно может стянуть длинные молекулы и прочно связать их в огромные пачки [c.18]

    Органические полимеры. Это разнообразные материалы, обычно получаемые из доступного и дещевого сьфья на их основе получают пластические массы (пластмассы) — сложные композиции, в которые вводят различные напо.лнители и добавки, придающие полимерам необходимый комплекс техни- С1ЮЙСТВ, а также синтетические волокна (см. гл. 35). [c.604]

    В последние годы начато промышленное осуществление ряда радиационных химико-технологических процессов. К таким процессам относятся в первую очередь реакции органического синтеза, протекающие по цепному (или близкому к цепному) механизму и инициируемые излучением хлорирование, сульфирование, окисление, присоединение по двойной связи и т. п. Освоенным в промышленности процессом является, например, синтез бромистого этила прямым присоединением НВг к этилену при действии у-лучей. Особо важной отраслью промышленной радиационной химии являются разнообразные превращения полимеров, в особенности Е /лканизация каучуков. Промышленностью освоена радиационная полимеризация этилена и прямое получение полиэтиленовых пленок и изделий сшиванием макролюлекул, т. е. образованием химических связей между ними при действии излучений. Радиационно-терми-ческая вулканизация изделий из каучука, в частности шин, является перспективным процессом, так как улучшается качество продукции. При радиационно-химических превращениях изменяются свойства и структура полимеров, что используется техникой для улучшения технологических показателей. [c.281]

    Упрочняющее или армирующее влияние, которое оказывает коллоидный кремнезем в органических полимерах, пленках и волокнах, изменяется в таких щироких пределах, что подобные воздействия не классифицированы. Коллоидный кремнезем включался в полиолефины [661], в термопластические органические полимеры [662], полиамиды 663] и в другие типы полимеров [664]. Армирование полисилоксанов коллоидным кремнеземом в разнообразных формах осуществляется весьма специализированными технологическими способами, которые выходят за пределы настоящей монографии. Благодаря сопо-лимеризации коллоидного кремнезема и растворимого полиэфирного силиката образуется прочная водонепроницаемая масса [665]. Упрочнение резины посредством введения кремнеземных порошков представлено в гл. 5. Водные золи кремнезема используются в резиновой промышленности в основном для загущения резины с открытыми ячейками, находящейся во вспененном состоянии. Такой кремнезем, осажденный на стенках пор, очевидно, оказывает фрикционное действие, делая пену менее легко сжимаемой и, таким образом, повышая допустимую несущую нагрузку [666—668]. Введение всего лишь 3 % 5102 повышает сопротивление на сжатие примерно на 90 % [669]. Наилучшие результаты были получены с золями кремнезема, не содерл<ащими примеси металлов н с размером частиц золя всего 1—3 нм в диаметре по сравнению с частицами диаметром 8 нм [670]. [c.601]

    Большим недостатком многих пористых полимеров является низкая термостойкость и сильное удерживание углеводородов. Углеводороды легко проникают внутрь таких адсорбентов в пространства между макромолекулами. В меньшей степени это проявляется в случае полиакрилонитрила [3751. Высокой термостойкостью обладают пористые полиарилаты (3761. Получение более жестких однородномакропористых структур и введение в синтез или применение при прививках разнообразных органических и элементорганических мономеров, вероятно, даст возможность иметь наборы довольно однородных адсорбентов с разной специфичностью межмолекулярного взаимодействия с газами и жидкостями. Хроматограммы показывают, что на многих уже полученных макропористых сополимерах с разными функциональными группами пики молекул, относящихся к группам А, В иВ, при малых дозах адсорбата симметричны [3741. [c.76]

    Комплексы родия с карбокоилсодержащими полимерами проявили высокую каталитичес1фо активность в гидрировании разнообразных органических соединешй - олефинов, ароматических, гетероциклических в мягких условиях /I, 2/  [c.176]

    Одной из самых сложных проблем очистки сточных вод целлюлозно-бумажной промышленности является удаление лигнина, который переходит в воду при обработке древесины. Это веш ество — сложный органический полимер, различный по составу для разных видов древесины. Его точное строение ие з становлепо. Известно только, что мономерами лигнина являются жирноароматические соединения — производные фенплпронана. Лигнин содержит различные функциональные группы —ОСНз, —ОН (из нпх 0,3-фенольные), =С0, эфирные группы. Из-за присутствия большого числа реакционноспособных функциональных групп лигшш легко вступает в разнообразные химические реакции. [c.109]

    При взаимодействии бутиллития с полимерами или сополимерами бромстирола в сухом тетрагидрофуране или смеси бензола с эфиром получают литийсодержащие полимеры. Эти соединения весьма полезны для пшучения металлоорганических или органических полимеров, которые не могут быть получены из соответствующих мономеров. Такие полимеры содержат самые разнообразные [c.21]

    Ароматические полиимиды в настоящее время являются одним из наиболее изученных классов термостойких органических полимеров на основе ПСС. Сочетание простоты получения, относительной доступности сырья и высокой теплостойкости обусловило применение пепополиимидов в самых разнообразных областях [13—18]. [c.437]

    В производстве кремнийорганических соединений потребляется большое число различных веществ, однако только немногие из них служат основой для построения целевой молекулы. Сюда относятся кремний и его сплавы, четыреххлористый кремний, хлорированные парафиновые и ароматические углеводороды (хлористый метил, хлористый винил, хлорбензол и др.), органические полимеры (эпоксиды, полиэфиры и т. д.). Остальные материалы используют как вспомогательные их роль в химических реакциях образования кремнийорганических соединений разнообразна. В одних случаях эти вещества являются необходимыми участниками соответствующей реакции, например, стружка магния, используемая для образования магнийорганических соединений (реактив Гриньяра) при получении органоэтоксисиланов. В других случаях вещество служит средой, в которой протекает реакция (при получении кремнийорганических продуктов реакции очень часто проводят в среде органических растворителей — толуола, бензина, этилцеллозольва и др.). [c.9]

    Наиболее разнообразно вредное воздействие агрессивных сред на высокомолекулярные органические материалы. Все полимеры под воздействием агрессивных сред стареют , т. е. теряют эластичность и упругость вследствие перегруппировки внутри макромолекул. В результате изделия из резины и пластмасс грубеют и растрескиваются. В сильноокислительных средах они теряют прочность и разрушаются вследствие окисления. При действии кислот и щелочей некоторые пластмассы набухают, размягчаются и теряют прочность. Ряд органических растворителей также вызывает набухание и растворение резины и отдельных видов пластмасс. В агрессивных средах может происходить деполимеризация, вызывающая липкость резиновых изделий, липкость и текучесть пластмасс. Термостойкость органических полимеров ограничена. Так, полиэтилен и винипласт начинают размягчаться при 60—80° С. Наиболее термостойкие фторопласты выдерживают температуру до 300° С. [c.233]

    Четвертая группа объединяет разнообразные по химическому составу пленки из органических полимеров. Они наименее изучены Указания о применении их в виде прозрачных покрытий, изме йяющих Оптические свойства изделий из прозрачных материалов появились лишь в последние годы. Пленки из органических поли меров, как это будет видно далее, характеризуются особой хими ческой инертностью, малой газопроницаемостью, их можно полу чить значительно большей толщины, чем неорганические пленки В связи с этим некоторые пленки из органических полимеров слу жат хорошей защитой для легкорастворимых стекол и кристаллов Пленки из органических полимеров прозрачны для излучений вй димой и инфракрасной областей спектра. Но при этом на спект ральных кривых в ИК области наблюдаются полосы поглощения в различных участках, характерных для каждого соединения (см. главу 6). Для таких пленок показатель преломления колеблется от 1,40 (для фторорганического полимера) до 1,6—1,65. [c.16]

    Пленки из органических полимерных соединений составляют особую группу. Органические полимеры в большинстве случаев характеризуются высокими значениями диэлектрической постоянной и особой химической инертностью. Многие из них нерастворимы ни в воде, ни в растворах кислот и шелочей. Особо ценным свойством их является незначительная проницаемость для различных газообразных веществ и водяных паров, о чем свидетельствуют многочисленные исследования. Различными авторами показана зависимость газо- и паропроницаемости разнообразных органических полимерных соединений от природы соединения, микроструктуры и степени разветвленности цепей молекул, а также от температуры, толщины полимерной пленки и других условий [337—341]. Благодаря своим особым свойствам органические полимеры и нашли широкое применение при разработке антикоррозионных покрытий для изделий из металлов и в качестве изоляционных покрытий в электро- и радиотехнике. Исходными пленкообразующими веществами для таких покрытий служат фторорганические полимеры [45, 342], полиакрилаты, полиэтилен [343], полипропилен и их производные. В качестве изоляционных покрытий в электротехнике в последнее время находят широкое применение соединения совершенно нового класса органических полимеров — поли-имиды [344, 345]. [c.154]


Смотреть страницы где упоминается термин Разнообразные органические полимеры: [c.588]    [c.50]    [c.396]    [c.175]    [c.178]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Разнообразные органические полимеры




ПОИСК







© 2025 chem21.info Реклама на сайте