Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выпарные установки расход пара

Фиг. 189. Расход пара в одноступенчатых и многоступенчатых выпарных установках (не учитывается теплота растворения и теплопотери) Фиг. 189. <a href="/info/1543566">Расход пара</a> в одноступенчатых и многоступенчатых <a href="/info/93873">выпарных установках</a> (не учитывается <a href="/info/6401">теплота растворения</a> и теплопотери)

    В однокорпусной выпарной установке на упаривание 1 кг воды расходуется около 1 кг пара. Стоимость тепловой энергии высока (до 0,966 руб. за 10 кДж тепла, исчисляемых по энтальпии пара), поэтому процесс выпаривания ведут таким образом, чтобы соковый пар первого корпуса установки являлся греющим для второго корпуса и т.д. Однако для этого нужно, чтобы температура греющего пара в каждом корпусе была выше температуры кипения раствора, т.е. необходимо переменное давление по ступеням. Отсюда возможны две основные схемы многокорпусных выпарных установок вакуумные и работающие под избыточным давлением. Каждая из этих схем обладает определенными преимуществами и недостатками. [c.21]

    В современных выпарных установках выпариваются очень большие количества воды. Выше было показано, что в однокорпусном аппарате на выпаривание 1 кг воды требуется более 1 кг греющего пара. Это привело бы к чрезмерно большим расходам его. Однако расход пара на выпаривание можно значительно снизить, если проводить процессов многокорпусной выпарной установке. Как указывалось, принцип действия ее сводится к многократно му использованию тепла греющего пара, поступающего в первый корпус установки, путем обогрева каждого последующего корпуса (кроме первого) вторичным паром из предыдущего корпуса. [c.354]

    Расход греющего пара в первом корпусе выпарной установки. Расход греющего пара в первом корпусе многокорпусной выпарной установки следует определять из уравнений расхода греющего пара по всем корпусам  [c.417]

    К недостаткам процесса выпаривания под вакуумом можно отнести необходимость в надежной системе поддержания вакуума и большой расход воды на конденсацию водяного пара из парогазовой смеси в концевом конденсаторе. Обычно в многокорпусных выпарных установках один-два корпуса работают под небольшим избыточным давлением, а последующие — под вакуумом. Для создания вакуума используются вакуумные насосы либо паровые эжекторы. [c.21]

    Расчетные коэффициенты формулы (1-61) для определения расхода пара в прямоточной выпарной установке [c.25]

    Ниже приводятся данные, характеризующие степень понижения потребления свежего пара на обогрев многоступенчатой выпарной установки при использовании тепла вторичного пара. В таблице приведены также данные, характеризующие зависимость потребления охлаждающей воды от числа ступеней многоступенчатой установки. Расходы пара и воды отнесены к 1000 кз испаряемой воды. [c.274]

    Оптимальное число корпусов выпарной установки. Расход первичного греющего пара на выпаривание растворов в многокорпусных аппаратах, как было показано, снижается с увеличением числа корпусов. Одновременно, однако, возрастает суммарная температурная депрессия (бх + ба + 63 +. .. + б ), уменьшается рабочая разность температур А и, следовательно, увеличивается суммарная поверхность нагрева аппарата. Все это приводит к увеличению размеров и стоимости аппарата, площади и кубатуры производственного здания, ремонта, обслуживания и т. п. Заметим также, что с ростом числа корпусов п падает рабочая разность температур в каждом корпусе, а с ней и коэффициент теплопередачи. Аналитический расчет оптимального числа корпусов п в общем виде приводит к чрезвычайно громоздким зависимостям, поэтому на практике величина п выбирается путем технико-экономического сопоставления ряда конкурирующих вариантов. С некоторым же приближением оптимальное число корпусов может быть вычислено следующим образом. [c.408]


    Для расчета многокорпусной выпарки составляется система иь (4/ /—1) уравнений (Л/ —число корпусов выпарной установки) решается эта система методом последовательных приближений. В число (4Л/— 1) уравнений системы входят N уравнений материального баланса, N уравнений теплового баланса и N уравнений теплопередачи, а также N— 1) дополнительных условий (соотношения между поверхностями теплообмена, расходами и давлениями в точках отбора пара и т. д.). [c.189]

    Расход тепла на нагревание раствора можно заметно сократить, понижая температуру кипения или организовав теплообмен между питающим раствором и уходящим продуктом и (или) конденсатом. Но наибольшего снижения расхода греющего пара можно добиться, повторно используя пары растворителя (вторичный пар). Зто достигается в многокорпусных выпарных установках, где пар из первого корпуса служит греющим агентом для второго, в котором кипение происходит при более низких температуре и давлении, и так далее. Другим методом повышения степени использования энергии является применение термокомпрессии (пар сжимается в дополнительном компрессоре настолько, что конденсируется уже при более высокой температуре, и может быть использован в качестве греющего агента в том же самом корпусе выпарной установки). [c.280]

    Приближенный расчет. При этом расчете принимают, что на 1 кг греющего пара приходится 1 кг выпариваемой воды, т. е. расход греющего пара на каждый корпус равен количеству образующегося в нем вторичного пара. Пусть в последнем корпусе выпарной установки с числом корпусов п выпаривается воды, а из предпоследнего (п—1)-го корпуса отбирается Еп-1 кг экстра-пара. Тогда в (п—1)-м корпусе должно выпариваться кг воды. При отборе из (п—2)-го корпуса Еп-1 экстра-пара в этом корпусе должно выпариваться 1 + п-2 г воды и т. д. [c.496]

    Если аппараты имеют тепловую изоляцию, то стоимость ее и суммарные годовые расходы определяются по методике, рассмотренной в гл. 1. Затем определяются энергетические затраты на эксплуатацию выпарной установки электроэнергии, пара, воды определяются затраты денежных средств и по расчетным данным составляется таблица (см. прил. VI). [c.99]

    Многокорпусная установка позволяет значительно снизить расход тепла за счет многократного использования пара. В такой установке температура кипения раствора понижается от первого корпуса к последнему только при этом условии вторичный пар какого-либо произвольного корпуса может служить в качестве греющего в следующем корпусе. С этой целью устанавливают сравнительно высокую температуру кипения в первом корпусе и температуру 50—60° С в последнем корпусе выпарной установки под разрежением последний корпус соединяют с конденсатором, снабженным вакуум-насосом. В установке, работающей под давлением, температура кипения в первом корпусе 125° С и выше, в последнем — не- [c.210]

    Пример 34. Требуется сконденсировать в вертикальном конденсаторе водяные пары из последнего корпуса выпарной установки. Расход воды составляет 160 м /час, ее средняя температура 30° С. В конденсаторе 300 трубок [c.193]

    Расход пара на выпарку 1 кг раствора в прямоточной выпарной установке определяется по уравнению [c.28]

    Расход пара в противоточной выпарной установке [c.29]

    Применение многокорпусных выпарных установок дает значительную экономию пара. Если приближенно принять, что с помощью 1 кг греющего пара в однокорпусном аппарате выпаривается 1 кг воды, то в многокорпусной выпарной установке на 1 кг греющего пара, поступившего в первый корпус, приходится количество килограммов выпаренной воды, равное числу корпусов, т. е. расход греющего пара на выпаривание 1 кг воды обратно пропорционален числу корпусов. [c.488]

    Кроме своего основного назначения— сгущения раствора — выпарная установка может выполнять и другие функции снабжение завода экстра-паром разного давления и конденсатом для питания паровых котлов и других технологических нужд. Выпарную установку надо рассматривать как единое целое, в увязке со схемой теплосилового хозяйства завода. Выпарная установка в простейшем оформлении — это однокорпусный выпарной аппарат. В такой установке расход тепла велик, так как на выпаривание 1 кг воды расходуется примерно 1 кг пара поэтому однокорпусные аппараты применяют в малых по масштабу производствах, где имеет значение простота устройства. [c.208]

    IX,19) член е Со ( к1— о) = О- Вместе с тем в вакуум-выпарной установке с параллельным движением греющего пара и раствора (см. рис. 1Х-2) вследствие самоиспарения последнего члены теплового баланса, выражающие расход тепла на нагревание раствора до температуры кипения в данном корпусе, во всех корпусах (кроме первого) будут иметь отрицательное значение. В частности, для трехкорпусной вакуум-установки [c.359]

    Из уравнения (13-21) следует, что расход греющего пара, затрачиваемого на получение экстра-пара, меньще, чем количество образующегося экстра-пара. При этом расход греющего пара на получение экстра-пара уменьшается по мере удаления точки отбора экстра-пара от первого корпуса. Так, в четырехкорпусной выпарной установке (я = 4) [c.497]

    В механических тепловых насосах пар сжимается с помощью турбокомпрессора при малых производительностях применяют ротационные компрессоры. На рис. 13-15 показана однокорпусная выпарная установка с сжатием всего вторичного пара в компрессоре. При пуске аппарата раствор подогревается свежим паром до кипения, после чего выпаривание производится за счет работы, затрачиваемой в компрессоре (механическое выпаривание). При этом теоретически добавки свежего пара не требуется на практике, в связи с расходом тепла на подогрев раствора и потерями в окружающую среду, обычно добавляют немного пара со стороны. [c.501]


    Расход пара для обогрева корпуса выпарной установки рассчитываем по формуле [c.577]

    Пример 1. Рассчитать поверхность нагрева и расход пара в трехкорпусной выпарной установке, работающей под разрежением. [c.231]

    Применение вакуума дает возможность использовать в качестве греющего агента, кроме первичного пара, вторичный пар самой выпарной установки, что снижает расход первичного греющего пара (см. ниже). Вместе с тем при применении вакуума удорожается выпарная установка, поскольку требуются дополнительные затраты на устройства для создания вакуума (конденсаторы, ловушки, вакуум-насосы), атакже увеличиваются эксплуатационные расходы. [c.348]

    Выбор числа корпусов. С увеличением числа корпусов многокорпусной выпарной установки снижается расход греющего пара на каждый килограмм выпариваемой воды. Как было показано, в однокорпусном выпарном аппарате на выпаривание 1 кг воды приближенно расходуется 1 кг греющего пара. Соответственно в двухкорпусной выпарной установке наименьший расход греющего пара на выпаривание 1 кг воды должен составлять Vg /сг, в трехкорпусной — Va кг, в четырехкорпусной — / кг и т, д. [c.362]

    На испарение при атмосферном давлении 1 кг воды из раствора в аппаратах поверхностного типа расходуют примерно 1,1 кг греющего пара. Несколько больше — при однократном испарении в вакууме. Расход греющего пара можно сократить, применяя многокорпусные выпарные установки. В этих установках первый выпарной аппарат (корпус) обогревают свежим паром. Образующийся вторичный пар используют для нагрева и выпарки раствора в следующем аппарате, в котором остаточное давление ниже, чем в первом аппарате. Это позволяет понизить температуру кипения во втором аппарате. Расход пара уменьшается по сравнению с однократной упаркой, но не пропорционально увеличению числа последовательно работающих корпусов эффект снижается из-за повышения температуры кипения раствора по мере его концентрации. Наиболее распространены трех-и четырехкорпусные установки. [c.232]

    Таким образом, расход греющего пара на выпаривание 1 кг воды в многокорпусных выпарных установках приближенно обратно пропорционален числу корпусов. [c.362]

    В действительности расход греющего пара на 1 кг выпариваемой воды больше и практически в зависимости от числа корпусов выпарной установки изменяется примерно следующим образом  [c.362]

    Технологический (тепловой) расчет многокорпусного выпарного аппарата при его проектировании сводится к определению поверхности нагрева корпусов при заданных условиях работы выпарной установки. По сравнению с однокорпусным аппаратом особенность расчета состоит в том, что общую полезную разность температур необходимо рационально распределить по корпусам и найти количество выпариваемой воды ь расход греющего пара для каждого корпуса. [c.377]

    Для определения расхода пара, греющего первый корпус выпарной установки, выражают количества воды, выпариваемой по корпусам, в соответствии с уравнением (IX,37)  [c.379]

    Основные задачи усовершенствования десорбционных процессов состоят в повышении производительности десорбхщонных колонн, снижении их стоимости, уменьшении энергетических, особенно тепловых, затрат, снижении потерь СО2 и NHg в циклах. Следует отметить, что ряд мероприятий на некоторых содовых заводах уже сейчас, без каких-либо дополнительных научно-технических проработок, позволил бы существенно улучшить десорбционные процессы. Отсутствие на многих содовых заводах малой дистилляции приводит к снижению производительности большой дистилляционной колонны, неоправданно высоким потерям СО 2 с жидкостью теплообменника, извести и аммиака с отбросной жидкостью. При выработке a lg из дистиллерной жидкости увеличение ее объема за счет разбавления слабыми жидкостями и аммиачными флегмами в большой дистилляционной колонне влечет за собой дополнительные затраты тепла на выпарную установку. Расход пара на выпарку увеличивается и при подаче флегмы конденсатора дегазации обратно в дегазатор фильтровой жидкости в производстве NH4 I методом выпаривания. [c.32]

    Для дальнейшего снижения расхода пара, стоимость которого составляет основную долю расходов на переработку щелоков, целесообразно применение одностадийной схемы выпарки с полным трехкратным использованием тепла греющего пара. Более глубокий вакуум в III корпусе (остаточное давление до 0,1 ат) также способствует увеличению полезной разности температур и повышению производительности выпарной установки. Расход греющего пара при одностадийной схеме выпарки составляет около 2,3 Мкал на 1 т 92%-ного NaOH (примерно 3,7—4 г). [c.382]

    Тепловая нагрузка выпарной колонны. Затраты на регенерацию аминового раствора определяются количеством тенлопой энергии, потребляемой испарителем выпарной колопны. Расход энергии, в свою очередь, зависит от всех других параметров работы установки. Удельный расход пара прн этом составляет 0,108—0,18 кг пара на 1 л раствора амина. [c.275]

    Пример VII. 18. Рассчитать трехкорпусную выпарную установку для выпаривания раствора NaOH от начальной концентрации < 0=14 вес. % до конечной концентрации с =50 вес. %. Расход исходного раствора So = 7300 кг/ч давление пара, обогревающего первый корпус, Ро = 6 аг давление вторичного пара в последнем корпусе рз = 0,1 аг начальная температура исходного раствора 0 = 20° С. Раствор и пар движутся противотоком. Поверхности теплообмена всех корпусов должны быть равны между собой. Применить выпарные аппараты с естественной внутренней циркуляцией. [c.230]

    При выпаривании растворов с небольшой температурной депрессией применение теплового насоса в многокорпусной выпарной установке, например для первого корпуса, может сущестиенно снизить расход свежего пара на выпаривание. [c.375]

    В связи с этим для расчета расхода пара D,, греющег первый корпус, и количеств воды, выпариваемой по корпусам (U i, W2,, IF ), можно применять уравнения теплового баланса совместно с уравнением материального баланса по выпаренной воде. Подобные уравнения для трехкорпусной прямоточной выпарной установки были приведены выше (см. стр. 358). [c.380]

    В выпарных установках энергетические затраты на выпаривание состоят из затрат на фазовые превращения растворителя ( п = = — исп) и на все стадии разделения растворителя и раствора (Лраад)- При наличии кристаллизации учитывается теплота кристаллизации д,. неводного вещества. Полное значение этих затрат д = = исп + Л разд — 7и- Отдельно нвобходимо указать затраты энергии на транспортирование исходных растворов, циркулирующей и упаренной массы, отводимой паровой фазы. В гл. 3 рассмотрено (с позиций эксергетического анализа) использование пара в противо-точной автоклавной батарее для разложения бокситов. Для поверхностных многоступенчатых выпарных установок приближенный удельный расход теплоты можно рассчитать как частное от деления средней теплоты парообразования в ступенях выпаривания на число п таких ступеней д = (7 сп/ - Практические данные показывают, что для этого типа установок при п = 1 затрачивается около 2800 кДж на 1 кг испаряемой воды. При увеличении числа ступеней выпаривания до 10 и 20 расход теплоты может составить соответственно 300 и 150 кДж. [c.229]


Смотреть страницы где упоминается термин Выпарные установки расход пара: [c.86]    [c.129]    [c.202]    [c.489]    [c.212]    [c.122]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.417 , c.430 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.408 ]




ПОИСК







© 2025 chem21.info Реклама на сайте