Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Змеевики

    Змеевик состоит из бесшовных цельнотянутых труб диаметром от 60 до 152 мм со стенками толщиной от 6 до 15 мм. Длина труб современных печей составляет от 12 до 18 м. Печные трубы соединяются в змеевик при помощи двойников либо приварных калачей. [c.98]

    ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ЗМЕЕВИКА ПЕЧИ [c.130]

    Потеря напора в змеевике печи непосредственно связана со скоростью движения продукта в печи. Скорость продукта в трубах печи должна иметь определенное минимальное значение, так как низкая скорость может привести к закоксовыванию и прогару труб. Чрезмерное же повышение скорости продукта приводит к увеличению потери напора в змеевике печи и, следовательно, увеличивает не- [c.130]


    Длина участка испарения определяется в предположении, что распределение тепловых напряженностей по длине радиантного змеевика печи равномерное  [c.132]

    Метод Бакланова неприменим, если в змеевике печи происходит разло/кепие продукта нли другие реакции. [c.132]

    На основании предварительных расчетов установлено, что при двух потоках потеря напора в змеевике печи чрезмерно велика. Поэтому разбиваем змеевик на четыре потока. [c.137]

    Гидравлический расчет змеевика печи [c.142]

    Змеевики трубчатых печей для термического крекинга и пиролиза являются типичным примером змеевиковых реакторов с теплообменной поверхностью для эндотермических реакций. Конвекционный [c.277]

    Это тепло необходимо отвести череа охлаждающие змеевики. [c.297]

    Для отвода тепла устанавливаются змеевики с прямоточным питанием. Г змеевики подается вода при температуре 100 С, и в них образуется пар с абсолютным давлением 36 ат при температуре насыщения, равной 243 С. Количество водяного пара [c.297]

    Расчет змеевиков водяного охлаждения [c.297]

    Внутри реакторов установки алкилирования помещаются пропеллерные насосы и змеевики для охлаждения. [c.302]

    Для поддержания необходимой температуры отдельные тарелки абсорбционной колонны снабжены охлаждающими змеевиками. Строгое соблюдение температурного режима в данном случае особенно важно по причине высокой склонности этого олефина к полимеризации. [c.203]

    В освинцованный реактор по трубе подают хлористый метил, поддерживаемый в жидком состоянии при помощи свинцового охлаждающего змеевика. Затем подают хлор при. включенной ртутной лампе, вмонтированной в стеклянной трубе. Одновременно включают мещалку. Смесь хлористого метила и образующегося хлористого метилена непрерывно отводится через перелив в колонну, где оба компонента разделяются. Хлористый метил через дефлегматор возвращается в реактор,, в то время как хлористый метилен накапливается в обогреваемом кубе перегонной установки. Хлористый водород отводится из реактора по трубе. Холодильник на реакторе служит для конденсации паров хлористого метила, увлекаемых потоком хлористого водорода. [c.146]

    Из реактора хлорирования газообразные продукты реакции посту пают в охлаждаемый водой змеевик 12, находящийся в сосуде 13, где быстро охлаждаются для предотвращения пиролиза продуктов. [c.161]

    Указанные типы печей с экранами двустороннего облучения разработаны как типовые. Эти печи особенно подходят для таких процессов, как термический крекинг, пиролиз, коксование, дегрщри-ровапие, где высокие температуры нагрева доллшел сочетаться со сравнительно небольшим временем пребывания продукта в трубах печи, т. е. с коротким змеевиком. Кроме того, эти печи значительно дешевле печей старых типов, поскольку для передачи того и е количества тепла требуется меньший вес металла труб, каркаса и т. д. [c.98]


    Методика их расчета принципиально не отличается от методики расчета конвекционного змеевика. Однако, поскольку коэффид иенты теплоотдачи аг к пару в трубах пароперегревателя и к воздуху в воздухоподогревателе соизмеримы с коэффициентом теплоотдачи от газов к стенке, при этих расчетах необходимо учитывать коэффициенты теплоотдачи к среде в трубах аг. [c.130]

    Эквивалентная длина змеевика вычисляется как сумма длпп труб и эквивалентной длины двойников. Эквивалентную длину двойников принято выражать как произведение некоторого коэффициента на внутренний диаметр трубы. Таким образом, гидравлическое сопротивление двойника приравнивается потере нанора па трепне в прямо-ли1[ейном участке трубы  [c.131]

    Для схемы 3, табл. 1 (один ход в корпусе, два хода в трубах) р = О,.5. Схема 4 соответствует аппарату с одним ходом в корпусе и четырьмя ходами в трубах, для нее р = 0,45. Схемы (3, 7 и 8 отвечают теплообменпому аппарату с одним ходом в трубах и поперечными сегментными перегор ) (ками в корпусе, а также змеевику с поперечным дви/кением однэго п)тока. При числе ходов или витков 5 и более такая схема равноценна противотоку. Схема 9 отвечает двухходовому теплооб.мепному аппарату с поперечными перегородками. [c.156]

    Если температурный уровень перегонки таков, что остаток не удается нагреть до нужной температуры теплоносителем, либо сли поверхность кипятильника и количество теплоносителя получаются чрезмерно большими, тепло в низ 1 олонны подводится при яомощп так называемой горячей струи . Часть остатка с низа колонны забирается насосом и прокачивается через змеевик трубчатой печи, где нагревается до более высокой температуры и частично мо кет испаряться, а затем возвращается под пигкнюю тарелку 1 олонны. [c.221]

    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    Реакторы с поверхностью теплообмена выполняются в виде трубчатых теплообменных аппаратов с насыпанным в трубки или межтрубное пространство катализатором, а также в виде непрерывных змеевиков с внешним обогревом или охлаждением. Применяются также пластинчатые реакторы. Реже применяются цилиндрические аппараты с наружной охлаждаюЕцей или нагреваюгцей рубашкой. [c.276]

    Вдоль всех поверхности теплообмена обеспечивается интенсивный съем тепла при помощп горячего парового конденсата, циркулирующего через охлаждающие рубашки змеевика. Проведение процесса в змеевике, составленном из труб небольшого диаметра, обеспечивает большую удельную поверхность охлаждения. Для полимеризации этилена это особенно важно, поскольку тепловой эффект реакции может достигать 1000 ккал кг п своевременный и быстрый отвод тепла является решающим фактором для данного процесса. Часть избыточного тепла отводится также рециркулирующим этиленом. [c.277]

    Пустотелая реакционная камера установок термического крекинга, п которую направляется реакционная смесь пз змеевиков печей, также представляет собо1г реактор адиабатического типа. [c.281]

    Регенераторы состоят из 7—10 зои (рпс. 147), разделенных охлаждающими змеевиками. Каждая зона имеет самостоятельный ввод воздуха и вывод газов регенерации при помощи [стелпл коробов п желобов. Катализатор вводится в регенератор через верхнее распределительное устройство — паук . Ппжнее распределительное устройство для катализатора имеет такую же конструкцию, как в реакторе. [c.283]

    Температурный ])ежлы регенератора регулируется подачей воды п змеевики водяного охлаждения. Каждая секция регенератора работает как адиабатическая. [c.285]

    На установках каталитического крекинга в псевдоожиженном слое имеется возможность максимально использовать избыточное тепло регенерации катализатора для нагрева сырья, вследствие чего иногда сырье нагревают только в тенлообменных аппаратах. При небольших выходах кокса все избыточное тепло затрачивается на нагрев сырья. Ири больших выходах кокса часть тенла регенерация используется для производства водяного пара нутом установки в регенораторо змеевиков. [c.287]

    Технологически трудной проблемой является выбор материала змеевиков для установок дегидрирования. Здесь мы встречаемся с теми же трудностями, как и при каталитическом дегидрировании, с той, однако, разницей, что приходится работать с еще более высокими температурами. Материал труб подвергается снаружи окисляющему, а изнутри восстанавливающему действию и чрезвычайно напряжен. В связи с этим уже давно делались попытки обойтись в процессе пиролиза без трубчатых печей. Некоторые опыты в этом нанравлении рассматрива отся позднее. [c.48]

    Внутренняя поверхность змеевиков нечи должна время от времени очи-щаться от углистых отложений путем выжигания в смеси воздуха с водяным паром. [c.52]

    Этилен, содержащий 0,05—0,1% кислорода, забирается компрессором 1, сжимается до 300 ат и подается в работающий под давлением приемник 2, откуда газ поступает в компрессор 3, где давление газа доводится до 1500 ат. Из приемника высокого давления 4 этилено-кислородная смесь через предохранительную трубку 5 поступает в полимеризациопную установку 6. Полимеризационный змеевик омывается горячей водой и таким образом температура поддерживается на требуемом уровне. В первой трубке полимеризация начинается при температуре 200—220°, из последнего сектора змеевика продукт полимеризации выходит с температурой 130°. Продукты полимеризации поступают далее через расширительный вентиль 7 в разделитель высокого давления 8, в котором поддерживается давление 200 ат и температура 130°, так что продукты реакции остаются жидкими. [c.223]


    По.пучение смачивающего вещества, известного под названием пекал ВХ, мо кно иллюстрировать следующим примером. В котле емкостью 6000 л тп ательно перемешивают 1000 кг безводного бутилового спирта, 850 кг нафталина и 1860 кг 96%-пой серпой кислоты. Котел снабжен мешалкой и змеевиками для охла кдения и подогрева реа]<цпонпой массы. Температура реакции поддерживается на уровне 25°. После одного часа перемешивания добавляют в котел 2400 кг 24%-ного олеума, перемешивают 30 мин. при 25°, [c.235]

    Количество углеводорода также измеряется дифференциальным расходомером, после чего он проходит через. повушку 5 в змеевик предварительного нагрева и поступает в реакционную трубку непосредственно перед форсунко1"[ подачи хлора. Вследствие высокой скорости подачи хлора достигается полное и однородное смешение обоих реагирующих веществ. Собственно реакция, которая протекает весьма быстро, проводится в сравнительно небольшом реакнионном объеме реактор изготовлен из стекля пайрекс (рис. 31). [c.159]


Смотреть страницы где упоминается термин Змеевики: [c.51]    [c.92]    [c.98]    [c.131]    [c.142]    [c.157]    [c.196]    [c.278]    [c.285]    [c.298]    [c.52]    [c.114]    [c.140]    [c.229]    [c.146]    [c.148]    [c.162]   
Смотреть главы в:

Технологиявяжущих веществ и изделий из них -> Змеевики

Механизация производства химической и нефтяной аппаратуры -> Змеевики


Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.346 , c.347 ]

Технология натуральных эфирных масел и синтетических душистых веществ (1984) -- [ c.296 ]

Справочник инженера - химика том первый (1969) -- [ c.0 ]

Основные процессы и аппараты Изд10 (2004) -- [ c.331 , c.338 ]

Коррозия и защита химической аппаратуры ( справочное руководство том 9 ) (1974) -- [ c.0 ]

Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.248 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.306 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.337 , c.339 ]

Основные процессы и аппараты химической технологии Часть 2 Издание 2 (1938) -- [ c.88 ]

Процессы и аппараты химической промышленности (1989) -- [ c.234 ]

Специальная аппаратура промышленности органических полупродуктов и красителей (1940) -- [ c.0 ]

Процессы и аппараты химической технологии (1955) -- [ c.319 , c.321 , c.331 , c.344 ]

Технология минеральных удобрений и солей (1956) -- [ c.158 ]

Вспомогательные процессы и аппаратура анилинокрасочной промышленности (1949) -- [ c.0 ]

Монтаж технологического оборудования нефтеперерабатывающих и нефтехимических заводов (1967) -- [ c.0 ]

Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.430 , c.435 , c.470 , c.690 , c.691 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.349 , c.357 ]

Процессы химической технологии (1958) -- [ c.53 , c.54 , c.420 ]

Альбом типовой химической аппаратуры принципиальные схемы аппаратов (2006) -- [ c.28 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.430 , c.435 , c.470 , c.690 , c.691 ]




ПОИСК







© 2025 chem21.info Реклама на сайте