Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам физические свойства

    Физические свойства. В компактном состоянии молибден и вольфрам представляют собой белые блестящие металлы. Молибден довольно тверд, но полируется и при высокой температуре куется и сваривается Вольфрам по своим свойствам очень напоминает молибден. [c.329]

    Где можно встретить в быту а) вольфрам, б) р,туть, в) медь, г) серебро На каких физических свойствах данного металла основано применение его в быту  [c.124]


    Физические и химические свойства. Вольфрам—тугоплавкий тяжелый металл. Атомные массы его природных изотопов 180, 182, 183, 184, 186. Содержание их в природном элементе соответственно 0,16 26,35 14,32 30,68 28,49%. Есть две кристаллические модификации вольфрама а (до 600 — 650°) — кубическая, объемно-центрированная, а=3,1бА р (выше 600—650°)—той же системы, а=5,04 А. У него наиболее высокий модуль упругости среди всех химических элементов, низкое давление пара, высокая электро- и теплопроводность, довольно большое поперечное сечение захвата тепловых нейтронов, высокая противокоррозионная стойкость. Его физические свойства см. на стр. 160. [c.222]

    Диаграмма состояния системы железо—вольфрам приводится на рис. 154. Влияние вольфрама на некоторые физические свойства железа представлено на рис. 155. [c.446]

    По физическим свойствам мышьяк и сурьма стоят ближе к металлоидам, а олово, молибден и вольфрам являются металлами. [c.250]

    По физическим свойствам мышьяк, сурьма и олово стоят ближе к металлам. По химическому характеру олово примыкает к металлам, мышьяк — к металлоидам. Сурьма занимает промежуточное положение. Вольфрам и молибден относятся к металлам. [c.430]

    Вольфрам обладает наиболее высоким модулем упругости среди всех химических элементов, низким давлением пара, высокой электро- и теплопроводностью, довольно высоким поперечным сечением захвата тепловых нейтронов, високой противокоррозионной стойкостью. Его физические свойства представлены в табл. 61 (стр. 277). [c.300]

    Наряду с общими физическими свойствами у каждого металла наблюдаются только ему одному присущие свойства. Они обусловлены главным образом строением его атомов и образуемых ими ионов. К таким свойствам относят, например, температуры плавления и твердость. Температуры плавления колеблются в значительных пределах. К наиболее тугоплавким металлам относятся вольфрам (3410°С), рений (3170 С), осмий (2700°С) и др. Самые легкоплавкие металлы — ртуть (—39 С) и цезий (+28 С). В обычных условиях ртуть — жидкость все остальные металлы в тех же условиях — твердые вещества. [c.193]

    В зависимости от изменения внешних условий (температуры и др.) у некоторых металлов кристаллические решетки могут перестраиваться, переходить из одной формы в другую. Например, обычное серебристо-белое олово имеет сложную кристаллическую структуру, устойчивую при температуре выше 13,5° С при более низкой температуре (особенно при больших морозах) кристаллическая решетка олова перестраивается и белое олово превращается в хрупкое серое, обладающее другими физическими свойствами. Точно так же железо, цинк, никель, кобальт, молибден и вольфрам могут переходить из одной кристаллической формы в другую, подвергаться аллотропическим превращениям. [c.302]


    В настоящее время как в зарубежной, так и в отечественной практике основными переплавляемыми материалами являются специальные стали, титан и его сплавы в больщих количествах переплавляются также молибден и его сплавы, цирконий. В последние годы в этих печах начали переплавлять гафний, вольфрам тантал, уран, ниобий, ванадий и ряд других металлов. В табл. 1 приведены имеющиеся в литературе данные по физическим свойствам некоторых из этих металлов. [c.5]

    Оборудование для научных исследований. Использование космического вакуума в разнообразных экспериментах на борту космического аппарата представляет большой научный и практический интерес для исследования физических свойств поверхности твердого тела, изучения химического состава поверхностей с помощью Оже- и рентгеновской фотоэлектронной спектроскопии и пр. С этой целью создано различное экспериментальное оборудование. Так, в условиях полета космического аппарата Скайлэб-1У с помощью специальной установки бьши созданы и изучены плавающие зоны для очистки и выращивания монокристаллов химически активных веществ, таких как вольфрам и кремний. Позднее с помощью плавающих зон были выращены монокристаллы тугоплавких окислов. [c.69]

    Хром, молибден и вольфрам похожи по многим физическим и химическим свойствам так, в виде простых веществ все они представляют собой тугоплавкие серебристо-белые металлы (т. пл. Сг==1855°, т. пл. Ао = = 2610°, т. пл. ==3380°), обладающие большой твердостью и рядом ценных механических свойств — способностью к прокатыванию, протягиванию, штамповке. [c.338]

    По физическим и химическим свойствам молибден и вольфрам похожи и несколько отличаются от хрома. Химическая активность металлов в ряду хром — молибден — вольфрам заметно понижается. [c.196]

    Простые вещества. Физические и химические свойства. В компактном состоянии Сг, Мо и W представляют собой плотные (7,19 10,22 19,35 г/см ) серебристо-белые металлы. Все три металла обладают высокими температурами плавления (1875, 2620 и 3395 °С) и являются самыми тугоплавкими в своих -рядах. Вольфрам вообще является самым тугоплавким из всех металлов. [c.336]

    Металлические и особенно ионные радиусы молибдена и вольфрама близки (табл. 34) вследствие лантаноидного сжатия. Поэтому молибден и вольфрам сходны по физическим и химическим свойствам, но существенно отличаются от хрома. При переходе от хрома к вольфраму восстановительная активность металлов несколько понижается. [c.416]

    Вольфрам и молибден, например, имея высокую температуру плавления и соответственно высокую прочность, не могут, однако, сохранить ее (выше 1400° С), так как легко окисляются в этих условиях. Следовательно, такое чисто физическое (механическое) свойство, как длительная прочность, не может быть обеспечено при отсутствии чисто химического свойства — жаростойкости. Этот пример наиболее ярко подчеркивает необходимость рассмотрения твердого состояния вещества с физико-химических позиций. [c.206]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Основные научные исследования относятся к неорганической химии. Изучил (1876—1879) полиморфизм окислов железа. Усовершенствовал (начало 1880-х) методы синтеза окислов хрома и изучал их свойства. Впервые получил (1886) фтор в свободном состоянии. Синтезировал все возможные фториды фосфора и фторпроизводные метана — первые представители фторорганических соединений. Исследовал (с 1892) тугоплавкие металлы и неорганические соединения при высоких температурах, став основателем химии твердого тела. Сконструировал (1892) и ввел в исследовательскую практику электроду-говые печи для изучения свойств твердого тела в области высоких температур. Синтезировал множество карбидов, боридов и силицидов металлов, изучил их механические, физические и химические свойства. Впервые синтезировал гидриды ряда металлов. Электротермическим путем получил в чистом виде молибден (1895), вольфрам (1897) и другие тугоплавкие металлы. Автор Курса минеральной химии (т, 1—5, 1904—1906). [c.346]


    Химический состав, физические и механические свойства сплавов вольфрам—молибден приводятся ниже. [c.451]

    Физические и химические свойства. Вольфрам—тугоплавкий тяжелый металл. Его природные изотопы имеют атомные массы 180, 182, 183, 184, 186 содержание их в природном элементе соответственно 0,16 26,35 14,32 30,68 28,49%. [c.300]

    Для изготовления машин, аппаратов, трубопроводов, запорной и крепежной арматуры, работающих при высоком давлении, применяются высококачественные легированные стали, т. е. стали, содержащие легирующие добавки — хром, никель, вольфрам, ванадий, титан и др. Легирующие металлы улучшают механические свойства стали, изменяют ее физические и химические свойства. [c.213]

    Фи.эические и химические свойства. Хром, молибден и вольфрам отличаются высокой температурой илавления и большой твердостью. Значения физических свойств хрома, молибдена и вольфрама ириведены в табл. 19. [c.281]

    Переходные металлы IV — VII групп. Сокращенные электронные конфигурации атомов (и-1) d ns уТ1, 2г и Ш, (и-1) d ns у V, КЬ и Та, (и-1) у Сг и Мо, 5d 6s у Ш и (и-1) d ns у Мп, Тс и Ке. Все /-металлы IV - VII групп имеют неспаренные электроны и свободные атомные орбитали на /-подуровнях предвнещнего слоя. Соответственно из-за образования ковалентных связей между атомами элементов они характеризуются высокими температурами плавления (см. рис. 11.3) и кипения, энергиями атомизации (см. рис. 11.11) и механической прочностью. Максимальную температуру плавления имеет вольфрам. Плотность металлов возрастает с увеличением атомного номера как в периоде, так и в группе (табл. 11.4). Физические свойства /-элементов зависят от их чистоты. Чистые металлы ковкие и пластичные, примеси, как правило, придают им хрупкость и повышают твердость. [c.371]

    Легированные стали. Как разнообразны применения стали, так разнообразны и предъявляемые к ней в каждом случае требования. От строительной или конструкционной стали (арматура зданий, мосты, суда) требуется высокая прочность и хорошая свариваемость, от инструментальной (режущий, мерительный и штамовый инструмент) — высокая твердость и износоустойчивость, от стали других назначений — упругость, жаростойкость, жароупорность, кислотоупорность, высокие магнитные свойства (сердечники электромагнитов) или, наоборот, немагнитность. Придание стали заданных механических, физических или химических свойств достигается введением в нее добавочных, легирующих элементов, по одному, по два и более. В качестве легирующих элементов в металлургии используются главным образом металлы старших групп периодической системы ванадий, хром, марганец, вольфрам, молибден, никель, а из металлоидов кремний и бор. Легирующие элементы либо образуют в массе сплава химические соединения с его другими составными частями, чаще всего карбиды, либо же при затвердевании сплава кристаллизуются в виде твердого раствора в а-, а иногда в у-железе. Так, при затвердевании высоколегированных никелевых и марганцевых сталей превращения у-железа в а-железо не происходит, и затвердевшая сталь представляет твердый раствор никеля или марганца в у-железе. Большинство легированных сталей и прочих промышленных сплавов, как дюралюминий, электрон, латунь, бронза, имеют структуру твердых растворов. [c.699]


Смотреть страницы где упоминается термин Вольфрам физические свойства: [c.150]    [c.480]    [c.33]    [c.387]    [c.5]    [c.453]   
Неорганическая химия Том 2 (1972) -- [ c.216 , c.218 , c.345 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам, свойства



© 2025 chem21.info Реклама на сайте