Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы идеальная плотность

    Для графического расчета скорости и характеристик электрохимического коррозионного процесса используют поляризационные кривые V f (ij — кривую анодной поляризации анодных участков корродирующего металла и V = / (U — кривую катодной поляризации катодных участков корродирующего металла (так называемые идеальные поляризационные кривые). Для расчета опытные данные этих кривых для известных суммарных площадей анодных и катодных участков корродирующего металла пересчитывают в зависимости V = f ( ) и = / (/). Такой пересчет необходим потому, что у корродирующего металла суммарные площади анодных и катодных участков (в общих случаях) не равны, и поэтому плотности тока на анодных и катодных участках также не равны, в то время как сила коррозионного тока общая и для анодного, и для катодного процесса  [c.271]


    Значения идеальной плотности металлов первого длинного периода. Идеальная плотность опре(деляется здесь как такая плотность, кото рую имели бы эти металлы. в том случае, если бы их атомные массы были равны 50. [c.493]

    После хрома такого повышения прочности связи не наблюдается. Вместо этого прочность, твердость и другие свойства переходных металлов остаются по существу постоянными для пяти элементов — хрома, марганца, железа, кобальта и никеля такое положение вполне согласуется с небольшим изменением их условной идеальной плотности,, показанным на рис. 17.3. (Низкое значение для марганца связано с необычной кристаллической структурой этого металла подобной структуры не имеет ни один другой элемент.) Таким образом, можно сделать вывод, что металлическая валентность более не возрастает, а остается для этих элементов равной шести. Затем после никеля металлическая валентность вновь уменьшается в последовательности медь, цинк, галлий и германий, как это показывает быстрое уменьшение идеальной плотности (см. рис. 17.3) и соответствующее снижение значений твердости, температуры плавления и других свойств. [c.494]

    Рассмотрим первые шесть металлов первого длинного периода — калий, кальций, скандий, титан, ванадий и хром. Первый из этих металлов — калий — мягкий, легкий металл, плавящийся при низкой температуре. Второй металл — кальций обладает гораздо большей твердостью и плотностью он имеет значительно более высокую точку плавления. Третий металл — скандий еще тверже, плотнее и плавится при более высокой температуре. Подобное изменение свойств продолжается при переходе к титану, ванадию и хрому. Это хорошо иллюстрируется графиком, приведенным на рис. 17.4 для условной идеальной плотности, равной частному от деления 50 на объем грамм-атома. Такая [c.510]

    В качестве поляризуемого рабочего электрода в полярографии используют ртутный капельный электрод. Он имеет небольшую поверхность и, следовательно, высокую плотность тока при малой силе тока (если пренебречь изменением концентрации пробы в результате электролиза), поэтому он легко поляризуется. При добавлении ртути по каплям (удовлетворительное время капания 3—5 с) в каждый момент образуется идеальная электродная поверхность. Другое преимущество электрода — большое перенапряжение водорода на ртути, что дает возможность в. нейтральном растворе проводить определение даже щелочных металлов. Этот электрод можно применять в области относительно высоких отрицательных потенциалов. Напротив, его положительная граница, измеренная относительно каломельного электрода, находится при -[-0,45 В (из-за анодного растворения ртути). [c.280]


    После хрома такого повышения прочности связи не наблюдается. Вместо этого прочность, твердость и другие свойства переходных металлов остаются по существу постоянными для пяти элементов — хрома, марганца, железа, кобальта и никеля такое положение вполне согласуется с небольшим изменением их условной идеальной плотности, показанным [c.511]

    Объемный метод [23]. В этом методе применяется высоковакуумная система измеренный объем (1/ см , НТД) азота впускается из газовой бюретки в сосуд с адсорбентом в количестве Ш граммов, находящийся при температуре жидкого азота. После того как равновесие установилось, количество V см , НТД) азота, оставшегося в мертвом пространстве, вычисляется по давлению и температуре. Адсорбированное на 1 г адсорбента количество газа равно (V,,—У)/1У сл (НТД)/г. Объем мертвого пространства может быть определен вычитанием из полного эффективного объема адсорбционной системы (определяемого при впуске газа, как описано выше, в пустой адсорбционный сосуд) объема, занимаемого адсорбентом. Для вычисления этого последнего требуется знание массы адсорбента IV и его истинной плотности. Поправки на адсорбцию азота на стекле, поправки в связи с тем обстоятельством, что адсорбционный сосуд находится при температуре жидкого азота, а также некоторые другие учитываются автоматически при определении мертвого пространства адсорбционного сосуда, если эффективный объем адсорбента при температуре жидкого азота находят из его истинного объема при комнатной температуре, пользуясь законом Чарльза. Возможные отклонения от законов идеальных газов, относительно малые для азота, также учитываются при определении этого объема. Расчеты при определении адсорбированного количества можно сократить, проводя калибровку во всем интервале давлений, при которых производятся измерения. Перед адсорбцией адсорбент обезгаживается при повышенной температуре, но так, чтобы его физические и химические свойства остались без изменения. Необходимо только удалить физически адсорбированные газы и пары, сконденсировавшиеся в капиллярах. Наличие хемосорбированного слоя не мешает определению величины поверхности, и попытки удалить его часто приводят к ошибкам. Более того, в случаях, когда азот хемосорбируется, например на некоторых чистых металлах при —192° С, необходимо образовать стабильный хемосорбированный слой, например, водорода или кислорода перед измерением низкотемпературной адсорбции азота. Присутствие нижележащего хемосорбированного слоя не изменяет величины поверхности в пределах экспериментальных ошибок ее определения. [c.145]

    Коррозионную поляризационную диаграмму можно построить на основании идеальных поляризационных кривых = /(1а) и Ек = (и) при известной площади анодных и катодных участков корродирующего металла путем пересчета зависимости потенциалов от плотности тока [Е = /( )] в зависимость потенциалов от величины тока [Е = (/)/]. [c.349]

    Выбор материала ребра для обеспечения минимального веса. Пригодность различных материалов для изготовления ребер определяется многими факторами плотностью, теплопроводностью, технологией изготовления и т. п. В идеальном случае коэффициенты температурного расширения материалов ребра и трубы должны быть близкими материал ребра должен быть достаточно прочен при рабочей температуре и пластичен (чтобы он мог противостоять ударам и вибрациям), кроме того, он должен легко привариваться к металлу трубы. Если материал обладает всеми перечисленными выше качествами, то он тем лучше, чем выше его теплопроводность и меньше плотность. Таким образом, отношение теплопроводности к плотности материала является хорошим критерием для сравнения различных материалов для ребер. Значения этого отношения приведены в таблице П2.2. Интересно отметить, что отношение й/р для меди (fe/p = 0,40) почти такое же, как для бериллия (fe/p -= 0,50). Однако медь более доступна, ее нетрудно паять, тогда как бериллий совершенно не сваривается, поэтому она оказывается предпочтительнее бериллия, хотя конструкция с медными ребрами будет иметь несколько больший вес. [c.263]

    Исследование влияния приложенной разности потенциалов на поверхностное натяжение границы раздела фаз удобнее всего проводить на идеально поляризующейся поверхности жидкого металла (обычно ртути) в водном растворе электролита. Очень важно, что при этом одновременно измеряются разность потенциалов фаз (по сравнению с каким-либо стандартным электродом) и поверхностное натяжение межфазной а поверхности (обычно по максимальной высоте столба ртути, удерживаемой силой поверхностного натяжения в капилляре) вместе с тем возможно определе- ние и плотности заряда двойного слоя по току, переносимому вытекающей по каплям ртутью, при известной их по-верхности. [c.215]

    Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически гомогенной поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностатической поляризации в пределах тафелевских участков. [c.166]


    Как видно из определения, понятие поверхности и ее связи с плотностью электронов отнесено Ферми к идеальной решетке однородных атомов металла, и поэтому оно не может быть распространено на поверхность реальных структур, в том числе, наиример, границу сопряжения разнородных атомов (наиример, металл (Д1е) — вакуум, Ме —Ме и т. и.). Однако именно плотность электронов, очевидно, справедливо отнесена Ферми [c.76]

    В идеальном случае система должна состоять только из стекла, стабильной керамики с высокой плотностью и металла, устойчивого в условиях СВВ в принципе допустимо ограниченное использование в виде прокладок высокостабильных эластомеров типа витона, однако это приводит к некоторому ухудшению СВВ, поэтому применения таких прокладок следует все же избегать. Для получения СВВ требуется обезгаживание системы путем ее вакуумной термообработки при 600—700 К, в то время как в присутствии витона температура не должна превышать примерно 500 К. Откачивание обычно проводят диффузионным насосом с ловушкой, каким-либо электроразрядным или ионносорбционным насосами. Выпускается широкий ассортимент термостойких цельнометаллических кранов, а также кранов с прокладками из витона . Для небольших лабораторных систем широко используют краны с диаметром трубок и отверстий порядка 5—25 мм. Вакуумные трубопроводы обычно выполняют из стекла или нержавеющей стали или комбинируют оба этих материала. [c.343]

    Наиболее наглядно кинетика анодного процесса может быть представлена зависимостью между плотностью анодного тока и потенциалом электрода, т. е. анодной поляризационной кривой. На рис. 26 приведена подобная обобщенная анодная поляризационная (потенциостатическая) кривая для идеального случая, когда скорость процесса саморастворения электрода невелика и внешний анодный ток может быть принят эквивалентным общей скорости растворения электрода. На горизонтальной оси отложена плотность анодного тока, на вертикальной — потенциал электрода. Точка а соответствует равновесному значению потенциала металла в данных условиях. Кривая Е ЛВС соответствует логарифмической (тафелевской) зависимости потенциала электрода от плотности тока при растворении металла в активном состоянии, например, по реакции [c.42]

    Титан часто называют металлом будущего, так как он обладает небольшой плотностью, хорошими механическими и технологическими характеристиками и идеальной коррозионной стойкостью во многих средах. Он нашел широкое применение в военной, авиационной, судостроительной и химической промышленности. [c.108]

    Маленькие частицы металла во многом сходны с небольшими диэлектрическими частицами, если металл ведет себя как идеально поляризуемый электрод (разд. 49). Электрическое поле внутри металла равно нулю, а локальная поляризация изменяется благодаря тангенциальному электрическому полю. Если только поляризация не становится настолько большой, чтобы нарушилось условие идеальной поляризуемости, то для связи локальной скорости скольжения ио с локальным тангенциальным полем Ег можно применять уравнение (62-5). В случае частиц металла имеется возможность изменять плотность заряда на металлической стороне границы раздела. [c.219]

    Если предположить, что состав стали однороден и кристаллическая решетка ее идеальна, т. е. отсутствуют дефекты решетки любого рода, то диффузия водорода через такую решетку будет зависеть от плотности упаковки атомов в решетке, определяющей энергетическое взаимодействие между атомами металла. Диффузия водорода через феррит, имеющий объемно-центрированную решетку, протекает значительно легче, чем через аустенит, имеющий гранецентрированную решетку [104, 249, 250]. Цементит, имеющий орторомбическую решетку, обладает еще худшей проницаемостью. Энергия активации диффузии водорода через феррит составляет 7,1—7,5 кДж/.мол ь (1,7— [c.79]

    Реальные экспериментальные) поляризационные кривые, по-лучаемые при анодной поляризации анодной фазы Уа = / (ив ешп и катодной поляризации катодной фазы У, = / (Опнгши. заметно отличаются от идеальных кривых анодной и катодной поляризации, представленных на рис. 137 и 159, а получаемые при анодной и катодной поляризации металла, состоящего из анодной и катодной фазы, совсем не совпадают с идеальными поляризационными кривыми в большом интервале плотностей тока. Это различие обусловлено наличием эффекта саморастворения (корро- [c.282]

    Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде прн эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо РЮ, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной. [c.204]

    Литий — самый легкий металл плотность его в твердом состоянии при 20° С (после работы А. Ван-Аркеля [18]) принимается [10—12] равной 0,534 г/с.и . Все другие значения плотности [11] более высокие и получены на образца.х лития недостаточной степени чистоты. Однако наиболее точным, по-видимому, является значение 0,531 г1см (20°С), полученное Д. Снайдером и Д. Монтгомери [19] на образце лития известного изотопного состава и высокой чистоты. Расчет кристаллографической плотности идеальной решетки твердого лития (0,533 г/см ) подтверждает экспериментальное значение. Ниже приведена плотность лития в расплавленном состоянии [10, 20]  [c.12]

    Известен лишь один металл (Ра), кристаллизующийся при атмосферном давлении в структуре с КЧ 10 такое же КЧ найдено в структуре Мо812 (т. 3, гл. 23). В кристаллическом протактинии отношение с. а равно 0,825, т. е. очень близко и идеальному значению 0,816 соответственно этому каждый атом имеет десять почти эквидистантных соседей. При дальнейшем сжатии объемноцентрированного куба (ОЦК) два аксиальных соседа приближаются к центральному еще больше (координация 2+8) это имеет место в модификации ртути, образующейся при высоком давлении здесь отношение с а равно 0,707. Упаковка с КЧЮ, показанная на рис. 4.1,г, имеет плотность 0,6981, т. е. несколько более высокую, чем ОЦК-упаковка. Но наиболее важной из всех является упаковка с КЧ 12 с плотностью 0,7405. Вследствие того что высота ячейки (аУ2) в такой упаковке равна диагонали квадратного основания, более удобен другой выбор элементарной ячейки (рис. 4.1,<3), представляющей собой куб с шарами в вершинах и в центре всех граней отсюда ее название — гранецентрированная кубическая (ГЦК) структура. Такое размещение — одна из форм плотнейшей упаковки шаров одинакового размера. [c.176]

    Как отмечено выше, теоретическая плотность железа, имеющего при комнатной температуре идеально упакованную кристаллическую решетку, может быть установлена довольно точно. Все нарушения укладки атомов в решетке (дефекты структуры) - точечные (вакансии и межуэельные атомы и их Группировки), одномерные (дислокации и дисклинации), двумерные (дефекты упаковки, границы субзерен, границы зерен и границы фаз), а также трехмерные дефекты (например, микропоры), которые по определению относятся к микроструктуре и не требуют анализа на атомном уровне, - неизбежно приводят к дилатации и изменению плотнос- и металла. Соответственно вклад дефекта в изменение удельного объе-или плотности металла может послужить оценкой значимости вклада Данного вида дефектов в изменение его субмикроструктуры. [c.97]

    Согласно микроскопической теории в металлах плотность электронов проводимости п в иредиоложеиии идеального Ферми-газа связана с энергией Ферми Ер и  [c.76]

    Согласно кратко рассмотренным в разд. 1.42 принципам классификации топливных элементов, Юсти, Шайбе, Винзель и др. разработали газовые диффузионные электроды отдельно для водорода и кислорода. Эти электроды уже при температуре окружающей среды и умеренном избыточном давлении сочетают в себе такие оптимальные качества, как большая предельная плотность тока, незначительная поляризация, 100%-ный к. п. д. по току, почти абсолютная реализация идеального электрохимического процесса (с водой в качестве конечного продукта), максимальная аккумулирующая способность и способность к перегрузке, высокая устойчивость к отравлению и длительный срок службы причем псе это достигнуто при отказе от таких дорогостоящих конструкционных материалов, как редкие металлы. На усовершенствование технологии таких ДСК-электродов Немецкое трудовое объединение за 10 лет (с 1950 по 1960 г.) затратило больше труда, чем все существовавшие ранее группы вместе взятые. [c.86]

    Высокая Плотность окислителя желательна не только для концентрирования энергии ракетного топлива в возможно меньшем объеме, но и для макси мального увеличения объемного соотношения горючего и окислителя. Это не-.обходимо для того, чтобы получить недетонируюш,ий состав с максимальной энергией без потери текучести, необходимой при создании литого заряда. Кристаллы окислителя должны быть, по возможности, сферическими для обеспече= ния максимальной текучести неотвержденного ракетного топлива они должны также смачиваться горючей фазой для достижения хороших физических свойств смесевого топлива. Необходимо, чтобы кристаллы были безводными, не гигроскопичными и не претерпевали фазовых превраш,ений при температурах получения и применения ракетного топлива (в случае, например, нитрата аммония превраш,ение фаз происходит при 32 °С, так что изменение температуры серьезно сказывается на стабильности размеров кристаллов). В идеальном случае ни сам окислитель, ни продукты его разложения не должны вызывать коррозию металлов. [c.141]

    Менделеев систематически занимался изучением растворов и изоморфных смесей. Сконструировал (1859) пикнометр — прибор для определения плотности жидкости. Создал (1865—1887) гидратную теорию растворов. Развил идеи о существовании соединений переменного состава. Исследуя газы, нашел (1874) общее уравнение состояния идеального газа, включающее как частность зависимость состояния газа от температуры, обнаруженную (1834) физиком Б. П. Э. Клапейроном (уравнение Клапейрона — Менделеева). Выдвинул (1877) гипотезу происхождения нефти из карбидов тяжелых металлов предложил принцип дробной перегонки при переработке нефтей. Выдвинул (1880) идею подземной газификации углей. Занимался вопросами химизации сельского хозяйства. Совместно с И. М. Чельцовым принимал участие (1890—1892) в разработке бездымного пороха. Создал физическую теорию весов, разработал конструкции коромысла, точнейшие методы взвещнвания. [c.334]

    Можно высказать общие представления о течении диффузии водорода в сталь при предположении об однородности состава стали и об идеальности ее решетки. В этом случае диффузия будет протекать гомогенно и будет зависеть от плотности упаковки атомов в решетке металла, характеризующей энергетический уровень и интенсивность силовых полей решетки. Действительно, диффузия водорода в феррит, имеющий объемоцентрированную решетку, протекает значительно энергичнее, чем в аустенит, имеющий гранейентрированную решетку. или в цементит с орторомбической решеткой. Энергия активации для диффузии водорода в чистый Ре — 17000—18000 кал моль, тогда как для аустенита эта величина поднимается до 30000 [131]. [c.29]

    Фазы, структурные типы которых опредляются главным образом электронной концентрацией, включают сверхструктуры, собственно электронные соединения (фазы Юм-Розери) и фазы, образованные двумя переходными металлами. Фазы Юм-Розери, т. е. -латуни (А2—В2), Y латуни (DSi-a) и е-латуни (A3) представляют собою структурные типы, сформированные идеальными или слегка гофрированными сетками 3 , уложенными по законам А2, A3, иногда в сочетании с вакантными сетками, доля вакансий в которых меньше таковой в сетках кагоме. Элементарные ячейки этих фаз вырезают из ряда таких параллельных сеток, электронная плотность которых составляют 1,480—1,500 э/а ( 3/2) для -фаз, 1,548—1,615 э/а ( -21,13) для Y-фаз и 1,700—1,750 э/а ( 7/4) для е-фаз. Поскольку формируются эти фазы металлами 1В группы совместно с металлами групп ll , Ill и 1VS (реже металлами УПЛ и У1П грулп совместно с металлами ПВ группы), то стехиометрия фаз переменна (MmNn) и определяется электронной концентрацией, порядок распо- [c.131]

    Это обстоятельство, а также громоздкость вычислений электронной плотности методом функционала (если он приложим к расчету свойств границы металл - жидкость) оправдывает использование более простых полу феноменологте ских теорий. Преимущества таких подходов достаточно четко сформулированы одним из основателей метода модельных гамильтонианов Андерсеном Очень часто упрощенная модель проливает больше света на то, как в действительности устроена природа явления, чем любое число вычислений аЬ initio для различных конкретных случаев, которые, даже если они правильны, часто содержат так много деталей, что скорее скрывают, чем проясняют истину. .. В конце концов идеальный расчет просто копирует Природу, а не объясняет ее . [c.307]


Смотреть страницы где упоминается термин Металлы идеальная плотность: [c.493]    [c.493]    [c.401]    [c.511]    [c.512]    [c.74]    [c.118]    [c.406]    [c.20]    [c.168]    [c.243]    [c.387]    [c.550]    [c.55]    [c.574]    [c.55]    [c.224]   
Химия (1978) -- [ c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы условная идеальная плотность



© 2025 chem21.info Реклама на сайте