Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден химические свойства

    Таким образом, можно ввести понятие о полной и неполной электронной аналогии. Полными электронными аналогами называются элементы, которые имеют сходное электронное строение во всех степенях окисления, чем и определяется близкое подобие их химических свойств. Например, в рассматриваемой VI группе периодической системы полными электронными аналогами являются кислород и сера [01 [He] 2s 2p [S] [Ne] Зs Зp селен, теллур и полоний [Se] [A V><3d s4p - [Te] >nKr] 4d >5s 5p [Ро] [XeVЧf 5d %sЩp а также хром, молибден и вольфрам [Сг] [Ar] 3d 4s [Мо] [Kr] 4d 5si [Wl [Xe] 4f Sd 6s . У полония и вольфрама [c.11]


    Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра. [c.149]

    В V периоде элемент IV группы — цирконий — непосредственно следует за элементом П1 группы —. иттрием, а в VI пер1Иоде между элементом III группы — лантаном — и элементом IV группы — гафнием — вклиии-вается длииный ряд лантанидов. У лантанидов происходит достройка электродами третьего снаружи электронного слоя. С возрастанием за1ряда атомного ядра у них электронные оболочки все более стягиваются к ядру, и радиус атома уменьшается (табл. 13). Из-за этого, и у элементов, следующих за лантанидами, атомные радиусы оказываются относительно малым и близкими к атомным радиусам соответствующих элементов V периода. Сходство строения атомов здесь дополняется близостью. их радиусов. Поэтому и по химическим свойствам элементы цирконий и гаф,ний, ниобий и тантал, молибден и вольфрам и т. д. оказываются попарно чрезвычайно сходными. [c.152]

    Таким образом, можно ввести представление о полной и неполной электронной аналогии. Полными электронными аналогами называются элементы, которые имеют сходное электронное строение во всех степенях окисления, чем и объясняется близкое подобие их химических свойств. Например, в рассматриваемой VI группе Периодической системы полными электронными аналогами являются кислород и сера [О] — [ У28 2р [8] — [Ке] 03823р , селен, теллур и полоний [8е]34 [Аг]183 104524р4 [Те]52 - [Щ Чё Ъз Ър -, [Ро] - [Хе] Ч Ъ %8Чр, а также хром, молибден и вольфрам [Сг] — [Аг]> 3< 4 1 [Мо] 2 — [Кг]з 4 [ У] — [Хе]5 4/ 5(/ бв2 У полония и вольфрама в отличие от остальных элементов присутствует внутренняя завершенная 4/оболочка, наличие которой проявляется в лантаноидном сжатии. Поскольку 4/юболочка располагается глубоко, она мало влияет на свойства и не нарушает з арактер электронной аналогии. Атомы типических элементов — кислорода и серы — по электронному строению отличаются как от атомов элементов подгруппы селена (в высшей степени окисления), так и от атомов элементов подгруппы хрома (во всех степенях окисления, кроме высшей). Это значит, что кислород и сера по отношению к остальным элементам [c.229]

    Радиусы атомов ниобия и тантала, а также радиусы их ионов (Э ") очень близки из-за лантаноидного сжатия. Это объясняет большое сходство их физико-химических свойств. В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы вместе с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием (см. ниже) относятся к тугоплавким металлам. Тугоплавкими условно считают те металлы, температура плавления которых выше, чем хрома (1890°С). Тугоплавкие металлы и их сплавы играют большую роль в современной технике. [c.286]


    Химические свойства. Хром, молибден и вольфрам являются восстановителями восстановительная активность возрастает от вольфрама к хрому. [c.102]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    По физическим и химическим свойствам молибден и вольфрам похожи и несколько отличаются от хрома. Химическая активность металлов в ряду хром — молибден — вольфрам заметно понижается. [c.196]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    Свойства циркония и гафния и их соединений. Химические свойства циркония, гафния и их соединений очень близки. Сходство именно этих элементов наибольшее по сравнению с другими родственными парами (тантал — ниобий, вольфрам — молибден). Это объясняется тем, что вследствие лантаноидного сжатия радиусы атомов 2г и Н (соответственно 0,145 и 0,144 нм), а также радиусы ионов 2г + и Н + (0,074 и 0,075 нм) практически одинаковы, Ниже рассмотрены свойства этих элементов и некоторых их соединений. [c.132]

    Хром, молибден и вольфрам похожи по многим физическим и химическим свойствам так, в виде простых веществ все они представляют собой тугоплавкие серебристо-белые металлы (т. пл. Сг==1855°, т. пл. Ао = = 2610°, т. пл. ==3380°), обладающие большой твердостью и рядом ценных механических свойств — способностью к прокатыванию, протягиванию, штамповке. [c.338]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Химические свойства. В химическом отношении Мо и W являются восстановителями, но при обыкновенных условиях относительно устойчивы. Фтор с Мо и W взаимодействует энергично на холоду, кислород же — при нагревании. При нагревании молибден окисляется хлором, бромом и углеродом. Вольфрам непосредственно окисляется только хлором и то лишь при температуре красного каления. [c.329]

    Металлические и особенно ионные радиусы молибдена и вольфрама близки (табл. 34) вследствие лантаноидного сжатия. Поэтому молибден и вольфрам сходны по физическим и химическим свойствам, но существенно отличаются от хрома. При переходе от хрома к вольфраму восстановительная активность металлов несколько понижается. [c.416]

    Вольфрам и молибден, например, имея высокую температуру плавления и соответственно высокую прочность, не могут, однако, сохранить ее (выше 1400° С), так как легко окисляются в этих условиях. Следовательно, такое чисто физическое (механическое) свойство, как длительная прочность, не может быть обеспечено при отсутствии чисто химического свойства — жаростойкости. Этот пример наиболее ярко подчеркивает необходимость рассмотрения твердого состояния вещества с физико-химических позиций. [c.206]


    К d-металлам VI группы периодической системы Д. И. Менделеева относятся хром Сг, молибден Мо и вольфрам W. Близок к ним по химическим свойствам уран U, входящий в семейство актиноидов. [c.354]

    Физические и химические свойства. Молибден — тугоплавкий, высококипяш.ий, механически прочный, довольно пластичный металл, в компактном состоянии серебристо-белый. Цвет порошка от светлосерого до почти черного в зависимости от размера частиц. Основные физические свойства молибдена и вольфрама  [c.160]

    По химическим свойствам вольфрам близок к молибдену. В элементарном состоянии это типичный металл. В соединениях он поливалентен. Металлические свойства его в соединениях падают с ростом ва- [c.222]

    В 1926 г. было обнаружено повышенное содержание рения в молибдените, что позволило выделить его и подробно исследовать химические свойства. В 1930 г. был разработан способ промышленного получения рения из отходов переработки медно-молибденовых руд. В настоящее время он стал сравнительно доступным металлом. [c.278]

    Несмотря на то, что молибден был открыт в 1778 г. Шееле и его различные соединения были описаны еще Берцелиусом, химия этого элемента в настоящее время разработана еще недостаточно. В литературе часто встречаются противоречивые утверждения, а многие вопросы не нашли своего окончательного решения. Причины такого состояния химии молибдена следует искать, с одной стороны, в многообразии его химических свойств, с другой,— в сходстве многих его соединений в различном валентном состоянии, а также — в недостаточности применяемых до настоящего времени методов исследования. [c.7]

    К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспоз1П1ИИ в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е при наличии на поверхности отложений. [c.160]

    Порядок расположения материала, относящегося к цветным и редким металлам, в основном соответствует порядковому номеру элемента в Периодической системе элементов Д. И. Менделеева элементы с близкими химическими свойствами (цирконий и гафний, ниобий и тантал, молибден и вольфрам) рассмотрены в одной главе. [c.4]

    Основные научные исследования относятся к неорганической химии. Изучил (1876—1879) полиморфизм окислов железа. Усовершенствовал (начало 1880-х) методы синтеза окислов хрома и изучал их свойства. Впервые получил (1886) фтор в свободном состоянии. Синтезировал все возможные фториды фосфора и фторпроизводные метана — первые представители фторорганических соединений. Исследовал (с 1892) тугоплавкие металлы и неорганические соединения при высоких температурах, став основателем химии твердого тела. Сконструировал (1892) и ввел в исследовательскую практику электроду-говые печи для изучения свойств твердого тела в области высоких температур. Синтезировал множество карбидов, боридов и силицидов металлов, изучил их механические, физические и химические свойства. Впервые синтезировал гидриды ряда металлов. Электротермическим путем получил в чистом виде молибден (1895), вольфрам (1897) и другие тугоплавкие металлы. Автор Курса минеральной химии (т, 1—5, 1904—1906). [c.346]

    Вольфрам — редкий поливалентный элемент. Известны соединения вольфрама с валентностью от 2+ до 6-[-. Наиболее характерными и устойчивыми являются соединения с 6-валентным вольфрамом. По химическим свойствам близок к молибдену. Среднее содержание его в земной коре 0,00013% [414]. [c.208]

    Молибден — редкий элемент. Его среднее содержание в земной коре 0,00011% [414], а в золах советских нефтей 0,01% [448]. По своим химическим свойствам он сходен с хромом и вольфрамом. Молибден — поливалентный элемент. Обычно в природе встречаются соединения четырех- и шестивалентного молибдена, но он может иметь и валентность 2, 3 и 5. Наиболее характерны его шестивалентные соединения. [c.242]

    ХЛОРИРОВАНИЕ СОЕДИНЕНИЙ, СОДЕРЖАЩИХ ВОЛЬФРАМ, МОЛИБДЕН, РЕНИЙ, И НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА [c.49]

    Участие молибдена в окислительно-восстановительных биохимических процессах естественно вытекает из его физико-химических свойств, поскольку наряду с другими своими ионами, способными претерпевать окислительно-восстановительные превращения, молибден образует легко переходящие друг в друга соединения Мо(У) и Мо(У1). Кроме того, молибден отличается от других биохимически активных ионов металлов тем, что он образует ряд состояний окисления — Мо(П1), Мо(У) и Мо(У1), которые стабилизируются в водной среде лигандами, распространенными в живых системах. Поэтому естественно ожидать, что этот элемент будет принимать участие в многоэлектронных реакциях переноса электрона, как, например, в процессе фиксации азота. В этих его особенностях может заключаться основная причина выбора именно этого элемента как катализатора биохимических окислительно-восстановительных реакций. [c.261]

    Материал тигля и диафрагмы выбирают в зависимости от физико-химических свойств исследуемого вещества при работе с цинком используют молибден или кварц. Герметизация эффузионной камеры достигается с помощью специальных пружин 8, соединенных через изоляторы 10 проволочными тяжами 12 с крышкой 3 камеры и муфтой 9. Температуру камеры определяют по показанию термопары 6, помещенной в трубке 15 и закрепленной во втулке 16. Температуру можно определять и другими способами оптическим пирометром, ртутным термометром и т. д. [c.625]

    Фи.эические и химические свойства. Хром, молибден и вольфрам отличаются высокой температурой илавления и большой твердостью. Значения физических свойств хрома, молибдена и вольфрама ириведены в табл. 19. [c.281]

    Металлы элементов У1Б группы тугоплавки, характеризуются пониженной химической активностью. По ряду Сг—Мо—химическая активность падает. С водородом эти металлы не взаимодействуют. Важнейшими производными хрома являются производные Сг (III) и Сг (VI), а молибдена и вольфрама — в степени окисления +6. Производные хрома (VI) — в кислой среде сильные окислители. Хроматы и особенно молибдаты и вольфраматы вступают в реакцию конденсации с образованием изополиоксо-соединений состава ЫагСгзОю, Ма2 зОю и т. п. Для Мо (VI) и Ш (VI) весьма характерно образование гетерополиоксоанионов. Для Сг и Мо очень характерно образование пероксосоединений. Соединения хрома (III) по химическим свойствам похожи на производные алюминия. Хром, молибден, вольфрам — важнейшие материалы современной техники. [c.531]

    В нашей стране наибольшей популярностью пользуются мо-.тбдеповые стекла. Название молибденовые они получили благо-таря замечательному свойству — давать вакуумноплотный спай с металлическим молибденом. Молибденовые стекла по своим химическим свойствам уступают другим стеклам они менее стойки по отношению к кислотам, воде и щелочи. Однако они малогазо-ироницаемы и легко поддаются обработке. Они нашли применение в разных отраслях промышленности, например в электровакуумной. При длительном храпении в складских неблагоприятных условиях молибденовые стекла способны к кристаллизации. [c.21]

    Все три элемента близки по химическим свойствам. Это относится, в частности, к поливалентности, способности образовывать изополи-и гетерополисоединения, проявлению как металлических, так и неметаллических свойств.Основные свойства окислов усиливаются от хрома к вольфраму. Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений с низшей валентностью растет от вольфрама к хрому. Соединения Мо(У) более устойчивы, чем (V). Соединения Сг(П1) — ярко выраженные ионные соединения. Соединения (У) и Мо(У) почти не имеют ионного характера. Об этом, в частности, говорит их высокая летучесть. Молибден и вольфрам намного более способны образовывать изополи- и гетерополисоединения, чем хром. [c.159]

    Химические свойства новых промежуточных соединений (наравне со свойствами окислов, получившихся при обжиге), будут определять поведение огарка при последующей за обжигом химической обработке и влиять на извлечение молибдена в твердый продукт. Так, aMoOi и М0О2 не разлагаются аммиаком и увлекают молибден в нерастворимые отвалы. Важную роль играет гранулометрический состав концентрата в целом и размер зерен каждого из основных его компонентов в отдельности. Подвижность атомов в поверхностном слое зерна больше. Чем больше общая поверхность концентрата и отдельных его фазовых составляющих, тем больше их химическая активность. Соотношение размеров зерен исходных составляющих концентрата и продуктов обжига сказывается на преимущественном направлении отдельных элементарных процессов, протекающих при обжиге. Размер зерен веществ, способных испаряться, возгоняться или плавиться в процессе обжига, сказывается и на потерях с возгоном и пылью, влияет на кинетику реакций. Упругость пара вещества связана с радиусом кривизны [c.188]

    Типы месторождений реиийсодержащих руд. Среднее содержание рения в земной коре оценивается в 7-10 %. В 1960 г. в медно-свинцовых рудах Джезказганского месторождения был обнаружен в виде субмикроскопических выделений собственный рениевый минерал, названный джезказганитом. Состав его, по-видимому, отвечает формуле u(Re, Mo)S4 [77]. До этого открытия единственным известным минералом, содержащим сколько-нибудь существенные количества рения, был молибденит MoS 2. Благодаря близости химических свойств, атомных и ионных (Ме ) радиусов рений генетически связан с молибденом и изоморфно входит в кристаллическую решетку молибденита. Содержание его в молибденитах колеблется в широких пределах, начиная от десятитысячных долей процента и достигая в некоторых случаях десятых долей. Особенно богаты рением молибдениты из медно-молибденовых месторождений разных типов. Все остальные минералы содержат рений в гораздо меньших концентрациях. Среднее содержание рення в пирите и халькопирите, являющихся после молибденита его основными минералами-носителями, соответственно 3-10 и 6-10" %, максимальное 2 10 % [77]. [c.293]

    Вольфрам образует соединения, близкие по химическим свойствам к соединениям молибдена. Так же как окись молибдена, 0з малоактивный катализатор для неполного окисления углеводородов. На рис. 91 (кривая 2) показано изменение работы выхода электрона смешанных вольфрам-висмутовых катализаторов различного состава. Смеси, содержащие 35—40% атомн. В1, увеличивают ф аналогично молибден-висмутовым контактам. На рис. 92 показана зависимость удельных констант скоростей образования акролеина, СО и СО., от состава катализатора. Селективность окисления пропилена в акролеин максимальна для катализаторов, содержащих 33—43% атомн. В1, но значительно ниже значений, полученных для молнбден-висму-товых контактов. [c.227]

    Систематика редких металлов может быть основана на химических свойствах элементов, на характере технологических процессов извлечения редких металлов из руд, на минералогических признаках. Так как, однако, и химические свойства, и технология, и характер минералов тесно связаны с положением элемента в периодической системе, то наиболее рациональной представляется систематика по группам периодической системы. При этом мы начинаем рассмотрение редких металлов не с первой, а с седьмой и шестой групп периодической системы, отражая таким образом до известной степени роль отдельных редких металлов в современной технике несомненно, что вольфрам, молибден, ванадий относятся к числу металлов, технически наиболее важных, посколы у без них не мыслится пр01изводство специальных сталей. [c.18]

    Наиболее рекомендуемый в последнее время инконель 600 имеет следующий состав, % 76 N1, 14—16 Сг, 2,25— 2,75X1,0,7—1,2 МЬ, 0,4—1,0А1, 5—9Ре,0,3—1,0Мп <0,5Si, <0,2 Си, <0,08С, -<0,015. Химическая устойчивость этого сплава не содержащего молибден, несколько ниже, чем рассмотренных ранее N1—Мо-сплавов и близка к химическим свойствам нихромов. Инконель, например, имеет стойкость, пониженную по сравнению с монелем в неокислительных [c.230]

    Получение препаратов технеция-99т. По химическим свойствам технеций приближается к своему соседу по шестой группе молибдену [26]. Однако он более всего схож со своим высшим аналогом — рением. В соединениях технеция и рения наиболее предпочтительны степени окисления металлов +1У и +У. У технеция в степени окисления +У имеется сильная тенденция к образованию оксосоединений, в то время как степень окисления +1У отличается склонностью к образованию связи металл-металл и к образованию агрегированных структур. Соединения со степенью окисления ниже +1У образуются под действием лигандов сильного поля или в случае образования кластеров (С1 , СН3СОО и др.). При этом в ряде случаев процесс восстановления реализуется ступенчато с образованием промежуточных соединений 5-валентного технеция, который затем восстанавливается до трёх- или одновалентного состояния. В литературе имеется множество обзоров по химии технеция, в том числе и с ядерно-медицинской точки зрения [27, 28.  [c.403]


Смотреть страницы где упоминается термин Молибден химические свойства: [c.238]    [c.229]    [c.67]    [c.458]    [c.57]    [c.152]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.99 , c.100 , c.102 ]

Неорганическая химия Том 2 (1972) -- [ c.218 , c.226 , c.290 , c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Молибден, свойства



© 2024 chem21.info Реклама на сайте