Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол в синтезе пептидов

    В этом методе к хлорметилированному сшитому полистиролу присоединяли Л -защищенное производное первой аминокислоты синтезируемого пептида (схема 33). Затем защитную группу удаляли и вводили следующий остаток Л -замещенной аминокислоты. Эту процедуру повторяли до тех пор, пока не был получен нужный полипептид, после чего его отделяли от полимерного носителя и очищали. Применение смолы в этом случае позволяет после каждой стадии легко отделять закрепленный на ней продукт от остальных веществ, так что применение избытка растворимого реагента (для повышения выхода) не влечет за собой каких-либо трудностей при разделении и все стадии синтеза могут быть автоматизированы. В настоящее время этот метод широко используется для синтеза полипептидов [53] (см. также гл. 23.6). [c.325]


    Другим возможным способом классификации является систематизация по типам полимерных носителей реакционноспособных групп. Особую важность при этом приобретает вопрос активации полимеров. В предыдущем разделе были подробно рассмотрены методы введения различных реакционноспособных групп в полимерные структуры. Приведенные примеры можно обобщить в виде схем для наиболее распространенных полимеров. На рис. 2.3 приводятся данные по полимерным реакциям таких распространенных и стабильных материалов, как полиэтилен и полипропилен. Эти полимеры практически не участвуют ни в каких ионных реакциях, число вводимых в них активных групп обычно незначительно. Как правило, модифицированные структуры очень устойчивы и имеют гидрофобный характер. Однако даже такой чрезвычайно стабильный промышленный пластик, как полипропилен, может быть использован в качестве полимера-носителя в очень тонких реакциях (например, в фиксации ферментов). Модификацию полиэтилена и полипропилена можно осуществлять непосредственно в процессе переработки, поскольку многие технологические процессы (формование волокон, пленкообразование) проводятся из расплава, что создает богатые возможности для введения других активных мономеров, получения привитых и блок-сополимеров и т. д. Сшитый сополимер стирола и дивинилбензола может подвергаться различным химическим превращениям (рис. 2.4). Эти материалы будут подробнее рассмотрены в разд. В.З, посвященном полимерным реагентам. Введение групп типа ЗОзН придает полистиролу гидрофильность и позволяет получить растворимый полимер, однако, если такие группы вводятся в сшитый полимер, реакция протекает в очень неоднородных условиях и число присоединенных групп сильно зависит от размера частиц, их пористости, состояния поверхности и т. д. Очевидно, что в процессах ионообмена выгодно иметь возможно большее число таких групп. Для получения большей ионообменной емкости необходимо вводить группы —80 зН и —Ы КзХ почти в каждое фенильное ядро. При использовании полистирола в качестве носителя (при твердофазном синтезе пептидов, ферментативном катализе, катализе переходными металлами и т. д.) требуется, чтобы количество введенных групп превышало 10%. Химическая модификация полистирола (рис. 2.4) может быть осуществлена [c.44]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]


    Химический синтез полимеров с заданной последовательностью мономерных звеньев может быть очень сильно облегчен присоединением одного конца растущей полимерной цепи к нерастворимой подложке. При этом очистка полимера после каждой стадии химической реакции может легко достигаться фильтрованием. Этот метод был очень популярен в области пептидов, при этом повторяющиеся стадии могут быть автоматизированы [88]. Твердофазный синтез полинуклеотидов не был столь успещен, как твердофазный синтез полипептидов, в основном из-за трудностей в достижении количественных выходов на последовательных стадиях синтеза. Наиболее полезными реагентами для создания межнуклеотидной связи являются аренсульфонилхлориды, хотя для достижения максимальных выходов необходимо обеспечение безводных условий. Полистирол и сщитые стирол-дивинилбензольные сополимеры, содержащие остатки 4-метокситритилхлорида, были использованы для присоединения первого нуклеозида, через его 5 -гидроксильную группу к твердой подложке схема (55) . [c.170]

    Среди приложений 1фаунчзоеяинений к синтезу нуклеотидов или пептидов следует отметить описанные в разд. 4.2.5 синтез фторзамещенного нуклеотида (168) [94] и твердофазный синтез с использованием реакции хлорметили-рованного полистирола с калиевой солью бензилоксикарбонильного (Вое) производного аминокислоты [ схема (4.64)1 [ 107]. [c.248]

    Фенольные ОН-групны поли-4-гидрокси-З-нитростирола могут этерифицироваться аминокислотами и, наконец, активированные эфиры способны к обмену с растворимыми аминокислотами или пептидами. При отщеплении полимерных реагентов образуется конечный продукт реакции. На следующей стадии получают новый фиксированный полимером активированный эфир аминокислоты, который также используют в реакциях обмена. При большом избытке фиксированного эфира получают продукт с большим выходом. В противоположность синтезу по Мерифилду все продукты могут быть получены в растворе. При таком варианте синтеза возможно введение в структуру полимера бензильных остатков, которые выполняют функцию радикала, обеспечивающего определенное расстояние функциональной группы от макромолекулярной цепи (так называемый спейсер). Это достигается, при использовании 4-гидроксинитробензилхлорида для алкилирования полистирола  [c.94]

    Есть несколько сооби ений о получении, свойствах и использовании в твердофазном пептидном синтезе акриловых сополимеров, состоящих главным образом из поли-Ы,Ы-диметилакрил-амида [23, 95, 96] или поли- -акрилпирролидона [93, 97]. Эти полимеры совместимы с гораздо большим числом полярных и умеренно полярных растворителей (и, по-видимому, также с присоединенными пептидами), чем полиакриламидные или по-листирольные носители. Поэтому представляется заманчивым использовать указанные полимеры в качестве носителей для ТФ-анализа пептидов. Выбирая носитель, мы ориентируемся прежде всего на жесткую конструкцию матрицы, что позволяет избежать серьезных осложнений, связанных с разбуханием сорбента и блокированием колонки. Для того чтобы можно было проводить реакцию присоединения ФИТЦ в сильнощелочной среде, мы выбрали вместо стеклянных носителей макропористый полистирол. Дополнительное достоинство полистирола состоит в том, что на нем можно устойчиво и воспроизводимо проводить многочисленные реакции химической модификации. Выяснилось, что эта жесткая, сильносшитая матрица тем не менее обладает некоторой гибкостью на молекулярном уровне и обеспечивает большой набор микроокружений (включая неблагоприятные) в структуре гидрофобных поверхностей. [c.442]


Смотреть страницы где упоминается термин Полистирол в синтезе пептидов: [c.407]    [c.431]    [c.234]    [c.78]    [c.400]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.407 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез пептидов



© 2024 chem21.info Реклама на сайте