Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные группы

    Для умягчения воды применяют также различные искусственные органические высокомолекулярные вещества, называемые ионообменными смолами. Катионообменные смолы содержат активные группы [c.484]

    Экспериментально установлено, что наивысшую полярность молекулы ПАВ придают группы ЫОг, ОН, СЫ и СНО. Эти и другие характеристики функциональных групп позволяют прогнозировать поведение маслорастворимых ПАВ например, свободная энергия испарения, свойственная активным группам, всегда выше свободной энергии связи с малополярной средой. На границе раздела масло — воздух маслорастворимые ПАВ ориентируются углеводородными радикалами в масляную среду, а активными группами — в газовую фазу. [c.200]


    У азотсодержащих ПАВ энергия связи с водой возрастает от первичного атома N к третичному и у последнего она на порядок превышает свободную энергию испарения и энергию связи с малополярной средой, поэтому можно заключить, что в образовании водородных связей с водой участвуют не атомы водорода активных групп при азоте, а неподеленные электронные пары самого азота. [c.202]

    У катионитов ионогенные группы могут диссоциировать на малоподвижные анионы и подвижные катионы. Таким образом, если активной группой является —ЗОдН, анион 50з достаточно прочно связан с каркасом ионита, в то время как катион Н+ является подвижным и может быть заменен на другой ион такого же знака. Поэтому каркас ионита можно рассматривать как полианион, отрицательный заряд которого компенсируется зарядом подвижных атомов противоположного знака (противоионов). Каркас ионообменных высокомолекулярных органических соединений состоит из пространственной сетки углеводородных цепей, в которой закреплены группы, несущие заряд (50з и др.). [c.143]

    Сопоставляя данные, приведенные в табл. 4.3, с такими характеристиками металлов, как первый потенциал ионизации, работа выхода электрона, радиус иона, электроотрицательность, сродство к электронам и стандартный электронный потенциал в водных растворах, можно прогнозировать энергетические взаимодействия активных групп маслорастворимых ПАВ и металлов, а также ориентировочно оценивать дипольный момент и относительную степень ионности металлсодержащих маслорастворимых ПАВ. [c.202]

    Большой интерес представляет замена активных функциональных групп поверхности на неактивные (например, замена групп ОН на ОСНз или 031(СНз)з и т. п.). Активные группы ОН на поверхности кремнезема можно заменить на неактивные триметилсилильные группы 031(СНз)з путем реакци с триметилхлорсиланом  [c.503]

    Кристаллическая поверхность твердого тела неоднородна. На ней всегда имеются микроскопические участки, занятые химически активными группами атомов и так называемые поверхностные активные центры, служащие центрами адсорбции. Одной из причин их появления может служить выход разных кристаллических плоскостей на поверхность. Роль такого центра может играть также поверхностный атом основной кристаллической решетки со свободной связью. Появление активных центров может быть связано с неустранимыми дефектами поверхности, например с местом выхода на поверхность дислокаций, где кристаллическая решетка сильно возмущена и где в результате этого возникают очень активные поверхностные атомы. Причиной неоднородности поверхности могут стать способ и характер предварительной ее обработки, приводящей к образованию на монокристаллах ступеней, уступов, широких террас и других подобных дефектов, а также микроскопические примеси постороннего вещества, загрязняющего поверхность. [c.181]


    Асфальтогеновые кислоты и их ангидриды по внешнему виду похожи на нейтральные смолы. Это маслянистые, весьма вязкие, иногда твердые черные вещества, нерастворимые в петролейном эфире и хорошо растворимые в бензоле, спирте и хлороформе. Природа асфальтогеновых кислот практически не изучена. Предполагается, что в них содержатся три активные группы, вероятно, две гидроксильные и одна кислотная. Их можно назвать полинафтено-выми кислотами. Плотность асфальтогеновых кислот больше единицы. [c.33]

    Коррозионные процессы и эффективность действия ПАВ на поверхности металлов в топливах и маслах в значительной мере связаны с образованием на ней адсорбированной пленки воды. В тех случаях когда энергия связи воды с металлом меньше или равна энергии связи ПАВ с водой, последняя может связываться с активными группами ПАВ за счет водородных связей или сольватации анионной или катионной части молекул, солюбилизироваться внутри или на поверхности молекул ПАВ, связываться коллоидной структурой, либо, наконец, эмульгироваться. Возможен также вариант, когда энергия связи воды с металлом меньше или равна энергии связи ПАВ с металлом. При этом выдвигается на первый план энергия меж-молекулярной связи ПАВ со средой если она невелика, то идет избирательная сорбция ПАВ на наиболее активных участ- [c.207]

    Наличие у поверхностно-активных ингибиторов коррозии различных активных групп вызывает статические и динамические эффекты, определяющие дипольный момент, полярность и поляризуемость молекул в целом, их магнитные свойства [307]. [c.298]

    Согласно результатам работ [307, 308], на металле в этом случае образуется положительный слой поверхностных диполей, способствующий уменьшению энергии выхода электрона. Электронографическими исследованиями показано, что ингибиторы анодного действия резко изменяют фазовый состав поверхностного слоя металлов. В этом случае преобладают продукты взаимодействия металла с кислородом активных групп N02 или [c.300]

    Степень ионизации активных групп зависит главным образом от их химической природы и от свойств внешнего раствора (жидкой фазы). Так, например, катиониты, содержащие активные сульфогруппы, хорошо ионизуются и поэтому осуществляют обмен в широком интервале pH. Такая группа, как карбоксильная, в нейтральных или кислых средах большей частью находится в недиссоциированном состоянии в виде —СООН. В зависимости от константы диссоциации катионита в водородной форме (Н-форме) различают сильнокислотные и слабокислотные иониты. Как будет показано далее, синтез дифенилолпропана катализируется сильнокислотными ионитами. К ним относятся катиониты КУ-1, СБС и КУ-2, выпускаемые в СССР в промышленном масштабе. [c.143]

    Действие дигалоидопроизводных на вещества, содержащие активную группу СНг [c.43]

    При таком механизме передачи энергии реакция приводит к образованию одной нли нескольких новых активных частиц — возбужденных молекул, свободных радикалов или атомов. Таковы, например, атомарный водород, кислород, хлор, радикалы гидроксил НО-, нитроксил HNO-, метил -СНз и др. Все эти вещества, являясь химически ненасыщенными, отличаются ВЫСОКО реакционной способностью и могут реагировать с компонентами смеси, образуя в свою очередь свободные радикалы и атомы. Химически активные группы являются активными центрами цепной реакции. Так возникают более или менее длинная цепь реакций, в которой энергия избирательно передается от одной активной частицы к другой. [c.127]

    В этих неполярных растворителях в гомогенных условиях соблюдается тот же порядок активности групп при замещении, что и в диполярных апротонных растворителях N >Nз > >С1 >Вг >1 >5СК . Константы скорости в циклогексане в 5—7 раз больше, чем в хлорбензоле, но еще большие различия наблюдаются при переходе от циклогексана к ДМСО и особенно при переходе от циклогексана к метанолу [67]  [c.50]

    Полярность и поляризуемость во многом определяются электронными эффектами их активных групп [216]. Так, если ковалентной связью объединены в молекулу разные атомы, то электроны смещаются в сторону более электроотрицательных атомов или групп, и молекула становится полярной. Этот эффект именуют статическим индукционным эффектом ( Л). Из сказанного с.чедует, что эффект Д представляет собой разность электроотрнца-тельностей атомов или атомных групп молекулы ПАВ. Эффект передается по связи С—С, но не далее третьего-четвертого атома углерода. Знак I, эффекта зависит от того, сильнее притягиваются или сильнее отталкиваются (по сравнению с атомами водо1рода) электроны активными атомами или группами атомов. Для примера можно указать, что очень сильным отрицательным /а-эффектом обладают четвертичный аммониевые соединения, а по- [c.199]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]


    Рассмотрены процессы агрегации тонкодисперсных частиц суспензии [212]. Указано, что под коагуляцией следует понимать непосредственное соединение тонкодисперсных частиц в агрегаты, происходящее, когда силы притяжения (силы Ван-дер-Ваальса) больше сил отталкивания, обусловленных одноименными электрическими зарядами частиц результирующие силы зависят от расстояния между частицами, в связи с чем коагуляция интенсифицируется с повышением концентрации частиц и перемешиванием суспензии. Отмечено, что под флокуляцией надлежит понимать соединение в агрегаты менее тонкодисперсных частиц после прибавления в суспензию высокомолекулярных полимеров с вытянутой молекулой и большим числом активных групп действие таких полимеров состоит в соединении отдельных частиц мостиками из молекул полимера получающиеся при этом агрегаты достаточно рыхлые и проницаемые для жидкости. [c.193]

    Разница влияния гидратной и свободной воды на систему ионит — водный раствор подчеркнута в работах [3, 4]. Количество поглощенной воды ионитом в Н+-форме с емкостью 5 мг экв/г, соответствующее 0,6, говорит о том, что на 1 г абсолютно сухого ионита приходится 33 миллимоля НаО или приблизительно 6 молекул Н О на одну активную группу. [c.375]

    Энергетическое соответствие активных групп реагирующих молекул и групп атомов в активном центре катализатора является- вторым условием каталитического ускорения реакции. [c.63]

    Марка Сырьевая основа Активные группы Насыпная масса, кг л Удельный объем, мл(г Влаж- ность, % [c.150]

    Активные группы ный объем, мл/г по 0,1 н. раствору НС1 по 0,1 н. раств ору Внешний вид  [c.155]

    Марка Сырьевая основа Активные группы Тип ионита СОЕ, -иг-элв/г ДОЕ, г-экв/л Макси- мальная рабочая темпера- Фирма или пред- прия- тие [c.157]

    Очевидно, что молеку.чы, имеющие высокую полярность, большой диполышй момент и активную функциональную группу, будут способствовать укрупнению частиц образующегося нерастворимого осадка. Именно отим следует объяснить значительное укрупнение частиц осадка в присутствии меркаптанов. Меркаптаны имеют чрезвычайно активную группу — 8Н, которая, кроме того, обусловливает и высокую нолнрность молекулы. Меркаптаны активно взаимодействуют с металлами, особенно с медью, с образованием соответствующих меркаптидов. Меркаптиды в дальнейшем могут диссоциировать па ионы, что является [c.76]

    Для водорастворимых ПАВ свободная энергия взаимодействия активных групп с водой более высокая, чем свободная энергия испарения. Исключение представляют лишь группы =СН, —СбНб, —С1 и некоторые другие. В отличие от маслорастворимых ПАВ соединения, растворяющиеся в воде, ориентируются таким образом, чтобы их активные группы были направлены в водную фазу. [c.202]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    Топливомаслорастворимые ПАВ, активные группы которых обладают электронодонорными свойствами по отношению к данному металлу, называют ингибиторами анодного действия. Схематически взаимодействие подобных соединений и металла можно представить так  [c.300]

    Присоединением сульфенилхлоридов, протекающим с большой скоростью при комнатной температуре, получают полимеры с изоцианатными, галогенкремнийорганическими и другими активными группами [50]. [c.239]

    Во-первых, для сложных молекул прн активном соударении должно осуществляться такое расположение активных групп, которое обеспечивало бы образование продуктов реакции. Ве-у яшость-сйохвехсхвуюшей геометрической конфигурякгии при столкновении и выражает величина Р, которую называют сте-рическим фактором (стерическим множителем). [c.127]

    Активные группы А —КзЫ+ В —КзР+ С — краун-эфир О —криптанд Е — полиэтиленгликоль (эфир) Р — амид фосфорной кислоты О —эфир фосфо-ниевой кислоты Н — аминоксид I — азакраун-эфир К — АзОзНа Ь — Н(0)Кг [c.99]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    Актианость катализаторов исследовали г ри температурах 170...270°С, объемной скорости подачи сырья 3000 ч концентрации сероводорода 2-4%, отноаюнии 0, Н25=1. Результаты исследований приведены в табл. 4.1. Как видно, наиболее активны катализаторы, содержащие оксиды железа (К-24, СТК), никеля и угля. К высокоактивным относятся и катализаторы на основе оксидов цинка (Д-49, ГИАП-10-2) и меди (НТК-10). Катализаторы активной группы различаются селективностью окисления сероводорода до серы от нуля для никельхромового до [c.100]

    Процесс ионообмена включает диффузию ионов растворенного электролита внутрь структуры ионита, вытеснение подвижных ионов из ячеек решетки и диффузию вытесненных ионов в раствор. Этот процесс можно осуществлять в статических и динамических условиях. В статических условиях масло, содержащее загрязнения в виде раствора электролита, перемешивают с ионитом, применяемым в виде зерен диаметром 0,3—2,0 мм. В результате ионообмена активные группы ионита переходят в стабильную солевую форму, не склонную к гидролизу при промывке. При динамическом методе очистки ионообмен происходит в колонке, заполненной ионитом, при пропускании через нее загрязненного масла. [c.125]

    Особенности ферментативного катализа с точки зрения общей теории каталитических процессов заключаются в следующем. Каталитический процесс протекает в ограниченной области, называемой активным каталитическим центром фермента. Активный центр фермента содержит активные группы — доноры или акцепторы электронов (группы, содержащие пиридиновое кольцо или имидазольные кольца, хиноидные группы, комплексированные ионы металлов и др.). Необходимым условием каталитического действия ферментов является структурное соответствие активного центра и субстрата. [c.633]

    Гидроксид алюминия — ам-фотериое вещество, способное к адсорбции и обмену ионов из раствора. Активные группы в этом обмене — гидроксилы н протоны гидроксильных групп. Относительная сила и способ- ность к обмену с другими ионами зависит от рН среды, в которой образовался осадок гидроксида, и от pH раствора, в котором происходит взаимодействие с посторонними ионами. В щелочной среде (pH 9) преобладает адсорбция катионов, в кислой предпочтительно адсорбируются анионы поэтому при осаждении из раствора алюмината натрия, осадок, полученный в щелочной среде, содержит примесь натрия, а осажденный в кислой среде — хемосорбирует анион кислоты, взятой для осаждения. В изоэлектрической точке (точка нулевого заряда, pH л 9,0), адсорбция катионов и анионов. эквивалентна и осадок наименее загрязнен примесями. [c.70]

    Таким же образом извлекаются из воды ионы других металлов. Аниониты — это высокомолекулярные вещества, содержащие активные группы с ионами ОН , ИСО 3 или СО3. Пропускзя через слой анионитз воду, предварительно освобожденную от ионов металлов, извлекают из нее анионы, не допустимые по технологическому ( азначению воды  [c.27]

    Сырьевая основа Активные группы Насыпная масса, кг л Удельный объем, мл/г Влаж- ность, % СОЕ по 0,1 н, пастпору H2SO4, мг-экв г [c.150]

    Марка Сырьевая основа Активные группы ная масса, к г л по 0,1 н. раствору КаОН по 0,1 н. раствору СаС1з Внешннй внд  [c.152]


Смотреть страницы где упоминается термин Активные группы: [c.132]    [c.431]    [c.177]    [c.197]    [c.204]    [c.208]    [c.172]    [c.47]    [c.112]    [c.27]    [c.150]    [c.148]    [c.154]   
Механохимия высокомолекулярных соединений Издание третье (1978) -- [ c.320 ]




ПОИСК







© 2024 chem21.info Реклама на сайте