Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ переходными металлами

    Катализ переходными металлами окисления углеводородов кислородом [c.512]

    Вооружившись этим качественным представлением образования химической связи, можно попытаться понять секрет катализа переходными металлами. [c.540]

    В настоящее время убедительно доказано, что хемосорбция и катализ переходными металлами, их оксидами и другими соединениями происходит на активных центрах -координационно-ненасыщенных атомах поверхности твердого тела с незаполненными -орбиталями. [c.693]


    Катализ переходными металлами [c.58]

    Мастерс К. Гомогенный катализ переходными металлами. — М. Мир, 1983. [c.394]

    Изомеризация олефинов протекает также под влиянием протонных кислот или кнслот Льюиса [109], однако, поскольку в этом случае промежуточно образуются карбениевые ионы, то вероятность скелетных перегруппировок возрастает. Иногда этот способ можно применять для превращения менее устойчивых олефннов в более устойчивые (уравнение 206). В последние годы- все в большем масштабе для сдвига двойной связи применяют катализ переходными металлами, в частности хлоридом родия(III) [ПО]. [c.228]

    Так, реакция РЬС=С(СН2)4Вг с пятикратным избытком ди-н-бутилкупрата лития в смеси пентан — зфир (10 1) сначала при —30 °С, а затем при кипячении в течение 6 ч, дает смесь, содержащую соединения (53) (79%), (54) (13%) и небольшое количество линейного продукта. Использование соответствующего иодида повышает выход циклических продуктов (53) и (54) (91 8) до 99%. Разложение реакционной смеси ВгО дает соединение (53), в котором винильный протон на 91 /о замещен на дейтерий, т. е. этот углеводород образуется из стабильного металлорганического предшественника. Устойчивость первоначально образующегося циклического металлорганического соединения позволяет использовать эту реакцию для различных синтезов. Например, металлорганичеекий интермедиат вместо обычного гидролиза можно ввести в реакции с множеством других реагентов [схема (3.69)]. Используя соответствующие алкинилгалогениды, можно получить также четырех- и шестичленные циклы, однако циклогептаны и циклы больших размеров не образуются. Интересно отметить, что алкенилгалогениды циклизуются под действием магния через реактивы Гриньяра, образуя пятичленные карбоциклы [81] [схема (3.70)], хотя к катализу переходными металлами эта реакция отношения не имеет. [c.103]

    Прямое, синтетическое направление планирования в программе SOS было использовано при решении задач, поставленных перед нами в двух различных областях химии. Первый формальный подход к катализу (TAMREA ) был развит по инициативе Отдела химии в Марселе, который побудил нас начать исследования на границе между органической и неорганической химией. Вторая область исследования возникла под влиянием профессора Вернена, который анализировал очень сложную смесь гетероциклов, имеющих отношение к химии вкусовых веществ [312]. По первому проекту мы ввели в компьютер схемы основных реакций катализа переходными металлами [313—316]. Покончив с этим, мы спросили ЭВМ, какая последовательность реакций возникнет, если смешать этилен и комплекс переходного металла. Компьютер предложил большое число возможных процессов, среди которых один ранее предлагался Грином, но еще не рассматривался в литературе, хотя и кажется вполне разумным [169]. Машина предложила строение промежуточного соединения, объяснявшее экспериментально показанное отсутствие в реакционной смеси тримеров этилена [169]  [c.49]


    Другим возможным способом классификации является систематизация по типам полимерных носителей реакционноспособных групп. Особую важность при этом приобретает вопрос активации полимеров. В предыдущем разделе были подробно рассмотрены методы введения различных реакционноспособных групп в полимерные структуры. Приведенные примеры можно обобщить в виде схем для наиболее распространенных полимеров. На рис. 2.3 приводятся данные по полимерным реакциям таких распространенных и стабильных материалов, как полиэтилен и полипропилен. Эти полимеры практически не участвуют ни в каких ионных реакциях, число вводимых в них активных групп обычно незначительно. Как правило, модифицированные структуры очень устойчивы и имеют гидрофобный характер. Однако даже такой чрезвычайно стабильный промышленный пластик, как полипропилен, может быть использован в качестве полимера-носителя в очень тонких реакциях (например, в фиксации ферментов). Модификацию полиэтилена и полипропилена можно осуществлять непосредственно в процессе переработки, поскольку многие технологические процессы (формование волокон, пленкообразование) проводятся из расплава, что создает богатые возможности для введения других активных мономеров, получения привитых и блок-сополимеров и т. д. Сшитый сополимер стирола и дивинилбензола может подвергаться различным химическим превращениям (рис. 2.4). Эти материалы будут подробнее рассмотрены в разд. В.З, посвященном полимерным реагентам. Введение групп типа ЗОзН придает полистиролу гидрофильность и позволяет получить растворимый полимер, однако, если такие группы вводятся в сшитый полимер, реакция протекает в очень неоднородных условиях и число присоединенных групп сильно зависит от размера частиц, их пористости, состояния поверхности и т. д. Очевидно, что в процессах ионообмена выгодно иметь возможно большее число таких групп. Для получения большей ионообменной емкости необходимо вводить группы —80 зН и —Ы КзХ почти в каждое фенильное ядро. При использовании полистирола в качестве носителя (при твердофазном синтезе пептидов, ферментативном катализе, катализе переходными металлами и т. д.) требуется, чтобы количество введенных групп превышало 10%. Химическая модификация полистирола (рис. 2.4) может быть осуществлена [c.44]

    Работы последних десятилетий показали, что граница между гетерогенным и гомогенным катализом, казавшаяся долгое время принципиальной и непроходимой, в действительности расплывчата и часто условна. Это справедливо даже для газовых реакций благодаря существованию гомогенно-гетерогенных процессов и особенно характерно для каталитических реакций в жидкой фазе. В гомогенном и гетерогенном катализе встречаются сходные элементарные механизмы, сходные активные формы и сходные закономерности подбора. Особенно поучительно в этом отношении выявившееся в последнее время далеко идущее сходство между окислительно-восстановительным катализом переходными металлами и их твердыми неорганическими соединениями, с одной стороны, и катализом комплексными растворенными соединениями, с другой. Еще раньше такие корреляции были установлены между гомогенным и гетерогенным кислотным катализом. В обоих случаях причиной сходства является близость природы химических связей катализатора с реагентами, нашедшая квантовохимическое объяснение в сходстве кристаллического поля с полем лигандов и в образовании на поверхности л-комплексов, карбониевых и карба-ниевых комплексов и других неклассических образований. Далеко идущее сближение наблюдается и благодаря открытию роли нейтральных и заряженных радикальных активных центров и промежуточных форм в гетерогенном катализе. Конечно, своя специфика у гетерогенного и гомогенного катализа имеется, ее надо учитывать и использовать, но значение этой специфики явно переоценивалось. Исходя из этого, мы уделили в сборнике определенное место гомогенному катализу (статьи И. И. Моисеева, [c.5]


Смотреть страницы где упоминается термин Катализ переходными металлами: [c.339]    [c.44]    [c.196]    [c.256]    [c.29]    [c.48]    [c.99]    [c.29]    [c.48]    [c.99]    [c.191]   
Смотреть главы в:

Механизм жидкофазного окисления кислородосодержащих соединений -> Катализ переходными металлами

Механизм жидкофазного окисления кислородосодержащих соединений -> Катализ переходными металлами


Химическая кинетика и катализ 1985 (1985) -- [ c.489 , c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные



© 2025 chem21.info Реклама на сайте