Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация полиолефиновых волокон

    Деформация волокон из кристаллических полимеров, к которым относятся полиолефиновые волокна, происходит с образованием шейки , которая по мере вытягивания удлиняется за счет невытянутой части волокна, причем диаметр шейки остается постоянным (рис. 71). Образование шейки в волокнах из полиэтилена, полипро- [c.174]

    Эластические свойства полиолефиновых волокон. Качество текстильных изделий во многом зависит от соотношения обратимых (высокоэластических) и необрати.мых (остаточных) деформаций, развивающихся в волокне под влиянием приложенного напряжения. Наличие больших остаточных деформаций вызывает долго неисчезающую сминаемость тканей. При применении волокон в технике эластичность волокна играет еще большую роль. В табл. 49 приведены составные части деформаций полиолефиновых волокон, определенные при нагрузке, равной 25% от разрывной (для сравнения приводятся данные для капронового волокна). [c.206]


    Текучесть полиолефиновых волокон. При приложении внешнего усилия происходит деформация полиолефиновых волокон, развитие которой можно разделить на две стадии. На первой стадии почти мгновенно с момента приложения внешнего усилия волокно претерпевает деформацию, размеры которой зависят от величины приложенной нагрузки. Процесс растяжения на этом не заканчивается, и на второй стадии под влиянием постоянно действующей нагрузки происходит медленное увеличение деформации. При длительном воздействии внешнего усилия (величина которого значительно меньше величины предельной нагрузки) в результате постепенного увеличения удлинения может произойти разрыв волокна. Это явление, названное текучестью, присуще большинству полимерных материалов и особенно полиолефиновым волокнам (полиэтиленовому), что является существенным недостатком этих волокон. [c.208]

    Переход полипропиленовых волокон в изотропное состояние зависит яе только от температуры, но также и от их структурного состава. Волокна, содержащие в своем составе атактические структуры, характеризуются высокой усадкой вследствие пластифицирующего действия этих структур на изотактический полипропилен (рис. 40.11). Обратимая деформация должна повышаться с увеличением степени вытяжки волокон. В действительности для полиолефиновых волокон это не наблюдается. Максимальную усадку имеют полиэтиленовые и полипропиленовые волокна, вытянутые на 100% (рис. 40.11). Однако даже при этой степени вытяжки полиолефиновые волокна не возвращаются в начальное анизотропное состояние. Такое явление связано, по-видимому, с ограниченным перемещением кристаллических структур при воздействии температуры. Это подтверждается данными по усадке волокон из изотактического и атактического полистирола. Волокна из атактического полистирола [31] при нагревании полностью возвращаются в анизотропное состояние, что не характерно для волокон из изотакти--ческого кристаллического полистирола [16]. [c.554]

    Волокна, содержащие в своем составе атактические структуры, характеризуются большой усадкой вследствие пластифицирующего действия этих структур на изотактический полипро-пилен . Величина обратимой деформации должна повышаться с увеличением степени вытягивания волокон. В действительности 1ЛЯ полиолефиновых волокон этого не наблюдается. Макси- [c.186]

    Для уменьшения величины обратимой деформации волокна подвергают термообработке, в результате которой они сохраняют свои размеры постоянными при всех температурах. В процессе термообработки происходит снятие напряжений и образование новых связей вследствие изменения конформационного набора макромолекул, т. е. происходят релаксационные процессы. В результате терморелаксации полиолефиновых волокон изменяется разрывная прочность, относительное удлинение, плотность и другие свойства. Процесс термофиксации волокон осуществляется как в свободном, так и напряженном состояниях. [c.187]


    Для уменьшения обратимой деформации волокна подвергают термообработке, в результате которой они сохраняют свои размеры постоянными при всех температурах. В процессе термообработки происходит снятие напряжений и образование новых связей вследствие изменения конформационного набора макромолекул, т. е. протекают релаксационные процессы. В результате терморелаксации полиолефиновых и полистирольных волокон изме- [c.554]

    Очень важной характеристикой эксплуатационных свойств волокон является их устойчивость к многократным деформациям и истиранию. К сожалению, нет общепринятых стандартных методов оценки этих показателей. Сопоставление данных, полученных в одинаковых условиях, показывает, что большинство поливинилхлоридных волокон по устойчивости к многократным деформациям (двойные изгибы) превосходит полиакрилонитрильные, но уступают полиамидным и полиолефиновым волокнам. Однако волокна из перхлорвиниловой смолы (хлорин) и полностью усаженные волокна из обычного ПВХ (термовиль) выдерживают значительно меньше двойных изгибов, чем полиакрилонитрильные. Данных по устойчивости к истиранию поливинилхлоридных волокон в литературе почти нет. Указывается [14], что фибровиль обладает высокой износостойкостью и добавка его в количестве 10—15% к шерсти повышает устойчивость ткани к истиранию на 50—60%. Полимеры винилхлорида являются хорошими диэлектриками и в сочетании с их гидрофобностью это определяет высокую электризуемость волокон, при трении на них накапливается высокий отрицательный заряд. [c.438]

    Осн. св-ва М. близки к св-вам обычных комплексных нитей (см. Волокна химические, а также табл.). Для полиамидных М, характерны высокие прочность, устойчивость к истиранию и знакопеременным деформациям, прочность в узле и петле, достаточная атмосферостойкость, однако они имеют невысокий. модуль упругости, нестойки к действию щелочен и г-т, М, из полиэтилентерефталата, наряду с высокой прочностью, обладают повышенными модулем упругости и износостойкостью они более гидрофобны, чем полиамидные М., имеют высокую био- и атмосферостойкость. Полиолефиновые М. имеют высокие прочность, устойчивость к знакопеременным деформациям, гидрофоб ность, хим. стойкость, однако обладают низкими атмос феро- и износостойкостью. М, из СВХ гидрофобны, износо стойки для них характерны высокие электроизоляц. св-ва, однако сравнительно невысокие прочность и устойчивость к знакопеременным деформациям. [c.135]

    Для полиолефиновых волокон при сверхвысоких термических вытяжках (в 100—300 раз) образуется почти бесскладчатая структура с высокой ориентацией. Прочность таких волокон достигает 1,4—1,7 ГПа, модуль деформации— 35—70 ГПа. Однако-эти волокна очень легко фибриллируются вследствие малой величины энергии межмолекулярного взаимодействия в полиэтилене [41—43]. [c.309]

    Механические свойства полиолефиновых волокон зависят от природы полимера, а также в значительной степени от условий переработки полимера в волокно. К важнейшим показателям, характеризующим механические свойства волокон, относятся прочность, удлинение, начальный модуль, эластические свойства, устойчивость к многократным деформациям, текучесть под нагрузкой (крипп), усадка при повышенных температурах и др. [c.202]

    Удлинение полиолефиновых волокон при разрыве изменяется в довольно широком пределе. Высокомодульное полиэтиленовое волокно характеризуется небольшим удлинением (4—5%), присущим волокнам из очень жестких полимеров удлинение обычного полиэтиленового волокна и моноволокна составляет 10—25%. Вследствие снижения степени кристалличности полимера волокнам алатон из СЭП присущи высокие деформации до 35%. Для полипропиленового волокна разрывное удлинение составляет 15—40% оно, как правило, несколько выше, чем у полиэтиленовых волокон. Моноволокно из изотактического полистирола довольно жесткое (разрывные деформации 5—6%). Такое волокно представляет интерес для некоторых специальных областей применения, например для изготовления армированных пластиков. [c.204]

    Интересной областью применения полиолефиновых волокон является изготовление армированных пластиков, эксплуатируемых при умеренных температурах - Они выгодно отличаются от подобных материалов, полученных с применением других волокон, своим облегченным весом. Это важно для изготовления частей автомобилей, самолетов, ракет, катеров, яхт и других изделий. Волокнистая основа армированных пластиков должна иметь небольшие разрывные деформации. Этим условиям удовлетворяет высокомодульное полиэтиленовое волокно. Для полистирольного волокна из регулярного полимера производство ар-.мнрованных пластиков, пожалуй, является единственной областью, где его применение оправдано. [c.222]


Смотреть страницы где упоминается термин Деформация полиолефиновых волокон: [c.201]    [c.274]    [c.201]    [c.294]    [c.552]   
Полиолефиновые волокна (1966) -- [ c.174 , c.206 , c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Полиолефиновые волокна

полиолефиновая



© 2025 chem21.info Реклама на сайте