Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрывные машины для высоких скоростей деформации

    Разрывные машины для высоких скоростей деформации -  [c.155]

    Растяжение образца на разрывной машине в электрохимической ячейке выполняли с постоянной скоростью 34%/мин. При этом длина рабочей части, соприкасающейся с электролитом, оставалась неизменной и равной 10 мм. Скорость анодного растворения определяли путем непрерывной регистрации силы тока между деформируемым образцом и аналогичным ему недеформируемым, играющим роль катода в такой модели коррозионной пары, работа которой активировалась деформацией. Для регистрации использовали самописец типа Н-373, который благодаря фотоэлектрическому усилителю постоянного тока, соответствовал микроамперметру с нулевым сопротивлением. В опытах с разомкнутой цепью общий электродный потенциал деформируемого образца измеряли относительно 2 н. ртутно-сульфатного электрода сравнения. Регистрацию выполняли также самописцем Н-373,] работавшим в режиме милливольтметра с высоким входным со-( противлением. [c.69]


    Следует указать также на весьма рациональный метод определения основанный на закономерной взаимосвязи усталостных и деформационных процессов в твердых телах. Можно допустить, что в области безопасного напряжения ползучесть и релаксация напряжения практически отсутствуют. Экспериментально это предположение проверялось на примере полиэтилена высокой плотности [26], а также (более обстоятельно) на образцах пентапласта марки БГ (ТУ 6-05-1422—74). Образцы, по форме соответствовавшие ГОСТ 11262—68 (тип 5), получали методом литья под давлением. Затем их подвергали термостатированию в течение 1 ч при 60 С с последующим медленным охлаждением до нормальной температуры. Испытания проводили на разрывной машине FM-500 при 20 °С. Осуществляли два типа экспериментов. В экспериментах первого типа для серии из 27 образцов определяли по ГОСТ 11262—76 предел текучести и соответствующую ему деформацию ёт, которую замеряли индикатором часового типа с точностью 0,01 мм. Скорость деформирования составляла 10 мм/мин. Безопасное напряжение с учетом выражения (5.168) вычисляли как [c.184]

    Такое положение обусловило необходимость систематического исследования, цель которого — определение оптимальной комбинации параметров переработки температуры вытяжки и скорости деформации, требуемой для повышения величины естественной степени вытяжки [13, 14]. Оказалось, что температура вытяжки существенно влияет на деформационное поведение ПП в той сравнительно узкой области скоростей деформации, которые возможны на обычных разрывных машинах. Предельная температура, при которой к может превысить значения 7—9, составляет - 100°С. При высокой температуре вытяжка протекает через пластическую деформацию, вследствие чего материал отверждается. Достигаемая при этом степень вытяжки составляет 18 и более (рис. 1.10). [c.23]

    Однако в поведении ПОМ имеется и отличительная черта (рис. 1.13 и 1.14). Процесс деформационного отверждения в сильной мере зависит от скорости деформации (рис. 1.13) и существует оптимальная скорость перемещения зажима разрывной машины (при длине образца 2 см), находящаяся в пределах 1 см/мин, использование которой позволяет достичь при больших степенях вытяжки высоких значений модуля упругости (рис. 1.14 и 1.15). Примечательно, что подобное поведение уже наблюдалось ранее при вытяжке ЛПЭ [17]. Полученные в этом случае результаты показывают, что образцы низкомолекулярного полимера особенно чувствительны к выбору скорости деформации. Успешное деформационное упрочнение может быть достигнуто лишь при сравнительно высоких скоростях. Возможное объяснение сложному комплексу требований, предъявляемых для оптимизации механических характеристик образцов, состоит в том, что процесс вытяжки протекает по различным молекулярным механизмам. Каждый из них удовлетворяет принципу эквивалентности температуры и скорости деформации. Оптимальные же характеристики образца получаются лишь при однозначной комбинации этих параметров. Вероятно, в деформационном процессе участвуют как кристаллические, так и некристаллические области материала. При этом следует найти подходящие скорости, при которых оба процесса протекают одновременно. [c.25]


    При постановке экспериментов на обычных разрывных машинах образцы подвергаются растяжению с некоторой скоростью. Переменными являются три параметра деформация, время и напряжение (Т= onst), а результаты испытания фиксируются в виде кривой СГ =/(е). Временной параметр при этом учитывается. Так поступают при испытаниях металлов и часто, к сожалению, полимеров. Чтобы не исключать временной фактор, статические испытания нужно проводить с различными скоростями деформирования в предельно широком диапазоне. Тогда фактор времени косвенно войдет в характеристику материала и кривые будут разными при различных скоростях деформирования. Для статических испытаний нужны машины с плавным изменением в широком диапазоне скоростей деформирования, с жесткими силоизмерителями, обладающими высокой собственной частотой колебаний. Последнее позволяет реализовать все скорости деформирования без ухудшения точности измерения. Кроме этого, машины должны во время испытаний поддерживать постоянными температуру и скорости деформирования. Требования к машинам для динамических и ударных испытаний резин, приборам твердости качественно отличны от требований к аналогичным машинам для металлов [c.43]

    Во второй главе Исследование металла сварных соединений и основного металла труб длительно эксплуатируемого нефтепровода исследованы изменения механических характеристик металла сварных соединений, выполненных газопрессовой (ГПС) и электродуговой (ЭДС) сваркой, и основного металла нефтепровода после длительного срока эксплуатации (50 лет). Проведены испытания образцов из основного металла, металла швов и зон термического влияния (ЗТВ) сварных соединений, выполненных ЭДС, и металла зоны сварки, включающей зону сплавления и зону влияния, сварных соединений, выполненных ГПС (сталь Ст4сп), на растяжение и ударный изгиб. Испытания на растяжение проводились на универсальной разрывной машине фирмы MST со скоростью деформации, равной 8-10 с при комнатной температуре. Испытания на ударный изгиб проводились на маятниковом копре МК-30 с энергией удара, равной 150 Дж. В результате испытаний определены механические характеристики (предел прочности, предел текучести, относительное равномерное сужение, относительное сужение при разрыве) и значения ударной вязкости для основного металла, металла швов и металла ЗТВ сварных соединений, выполненных ЭДС, и металла зоны сварки стыков, выполненных ГПС (табл. 1). Установлено, что механические характеристики металла зоны сварки стыков, выполненных ГПС, значительно ниже, чем характеристики металла электродуговых швов и основного металла. Значение предела прочности основного металла после 50 лет эксплуатации находится в пределах, указанных в ГОСТ и сертификате на трубы. При испытаниях на ударную вязкость установлено, что в сварных швах и зонах термического влияния значения ударной вязкости более низкие по сравнению с основным металлом, что указывает на высокую вероятность хрупкого разрушения швов. Такие низкие значения могут быть обусловлены влиянием микроструктуры, а также наличием непроваров и пор, обнаруженных в швах. При этом для металла зоны сварки газопрессовых сварных стыков значения ударной вязкости ниже, чем для металла электродуговых швов и основного металла, что, по-видимому, обуслов- [c.9]

    Зависимость разброса прочности от объема испытываемых образцов исследовалась Хигучи [43]. Было установлено, что более высокие прочности достигаются у образцов меньшего объема. Лэндел и Федоре [44] считают, что в этих данных имеется ряд несоответствий. Во всех случаях, когда увеличение объема было связано с увеличением длины образцов, скорость перемещения зажима разрывной машины сохранялась и, следовательно, действительная скорость деформации длинных образцов была меньше, чем у коротких. [c.63]


Смотреть страницы где упоминается термин Разрывные машины для высоких скоростей деформации: [c.68]    [c.69]    [c.361]    [c.65]   
Смотреть главы в:

Механические испытания каучука и резины -> Разрывные машины для высоких скоростей деформации




ПОИСК







© 2025 chem21.info Реклама на сайте