Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток дозвуковой

    Выше было показано, что при течении в цилиндрической трубе с трением дозвуковой поток ускоряется, а сверхзвуковой тормозится, причем предельно возможным состоянием в обоих случаях при непрерывном изменении параметров является критический режим, т. е. достижение потоком скорости звука в выходном сечении трубы. Уравнение (17) позволяет установить количественную связь между изменением скорости и приведенной длиной трубы X- Если на входе в трубу поток дозвуковой и приведенная скорость его равна Я1 и если приведенная длина трубы меньше критического значения, определяемого формулой (18), то на выходе из трубы поток будет также дозвуковым, причем пз уравнения [c.187]


    Так как функция у Х) возрастающая, то отсюда заключаем, что при наличии сопротивления, в соответствии с найденным выше изменением приведенной скорости, статическое давление будет уменьшаться, если скорость потока дозвуковая, и увеличиваться, если скорость сверхзвуковая. [c.240]

    НЫХ ПОЛНЫХ давлениях газов величины Я1 и Яа связаны дополнительными условиями, ограничивающими область возможных скоростей потоков. Эти условия различны в зависимости от того, являются потоки дозвуковыми или сверхзвуковыми. [c.517]

    Параметры потока дозвукового течения N3 в суживающемся канале (1=2 м, Л, =0,1 м , 2=0,0 м% С=1587 кг сек) [c.161]

    Параметры потока дозвукового течения N 04 в расширяющемся канале ( =0,44 м, Л1=0,133-Ю ж-, Л2=0,287-10-2 м 0=1,5 кг/сек) [c.161]

    Наиболее простой пример области смешанного течения дает теория сопла Лаваля хорошо спрофилированное сопло содержит М-область, в которой течение непрерывно (отсутствуют скачки уплотнения). Область смешанного течения может возникать также и при обтекании тела потоком дозвуковой (на бесконечном удалении) скорости. Если эта скорость достаточно велика, т. е. превосходит некоторое критическое значение, вблизи тела образуется зона сверхзвукового потока. Хотя в принципе возможен случай непрерывного течения, типичным является образование в этой зоне скачка уплотнения. М-областью здесь является вся область течения — внешность обтекаемого тела. [c.223]

    Другая особенность характеристик компрессора — их зависимость от начальной температуры Т и физических свойств газа. С изменением начальной температуры и состава газа и, следовательно, его плотности пропорционально последней изменяются давление и мощность компрессора. Кроме того, от температуры и состава газа зависит скорость звука а = ]/ kRT), а при обтекании лопастей вследствие неравномерного распределения скоростей в потоке газа местная скорость может возрасти до звуковой или сверхзвуковой. При этом появляется дополнительное волновое сопротивление, связанное с возникновением скачков уплотнений и с отрывом потока в связи с неустойчивостью его и обратным переходом к течению газа с дозвуковой скоростью. [c.203]

    При обтекании невязкой жидкостью сопротивление трения равно нулю. Однако в невязком (дозвуковом) течении отсутствует также и сопротивление давления. Этот результат известен в литературе как парадокс Даламбера. В потоках с большими числами Рейнольдса, когда применима концепция пограничного слоя, иа достаточно тонких телах с гладкой поверхностью отрыв может не наступить. В этом случае распределение давления по поверхности описывается теорией невязкого потенциального течения, из которой и следует нулевое сопротивление давления. Расчет течения в пограничном слое на таком теле позволяет найти распределение поверхностного трения Тщ, (л) и, следовательно, коэффициент сопротивления. [c.136]


    При высоких температурах плазменных струй характерное время многих реакций сравнимо с характерным временем смешения и значительные превращения реагентов могут происходить на участке незавершенного турбулентного смешения реагирующих потоков. В пределе "быстрой" химической реакции [439] процессы химического превращения полностью определяются процессами переноса. При рассмотрении реакторов-смесителей с коаксиальным вводом дозвуковых потоков реагентов и плазмы смешение происходит в ограниченном пространстве реактора, поэтому возможно образование зон рециркуляции [82, 84, 86]. Наличие в потоке таких зон делает необходимым пользоваться системой уравнений Навье—Стокса, а не приближением пограничного слоя. [c.184]

    Нагрев топлива в потоке при его прохождении через подогреватель 5 имитирует нагрев топлива в топливно-масляных радиаторах дозвуковых и сверхзвуковых самолетов. Однако у некоторых сверхзвуковых самолетов топливо может нагреваться в топливных баках. Имеется вариант, в котором предусмотрена имитация нагрева топлива в баке самолета (установка ТСТ-2, рис. 41,6). [c.108]

    На применении уравнения Бернулли основан пневматический способ определения окорости потока, который состоит в том, что в поток вводится насадок (рис. 1.5), состоящий из двух трубок. Открытое отверстие одной из этих трубок (1) размещается в носовой части насадка (перпендикулярно к потоку), а отверстия второй трубки (2) расположены в боковой поверхности насадка (вдоль потока) при дозвуковой скорости замедление струи газа от встречи с насадком проходит без каких-либо потерь, так как трение и вихреобразование возникают уже на боковой поверхности насадка, т. е. после того, как струя минует область своего полного торможения, размещающуюся перед самым носиком насадка. По этой причине в первой трубке создается давление, почти в точности равное полному давлению набегающего потока во второй трубке, если ее входное отверстие достаточно удалено от носика, устанавливается давление, близкое к статическому давлению потока. Трубки 2 и 2 сообщаются с манометром, измеряющим давление. Отношение измеренных давлений [c.33]

    Расчеты по этим формулам достаточно точны только для дозвукового потока. Объясняется это тем, что при торможении сверхзвукового потока перед насадком возникает ударная волна, пересекая которую газовые струи претерпевают значительные гидравлические потери. Поэтому давление в трубке 1 пневматического насадка при сверхзвуковом течении существенно отличается от полного давления набегающего потока, что делает формулы (68) и (72) в этом случае неприменимыми. [c.33]

    Если рассматриваемое тело представляет собой летательный аппарат, снабженный воздушно-реактивным двигателем, то в сверхзвуковой струе воздуха, которая тормозится при втекании в двигатель, также происходит скачок уплотнения. Принципиально можно представить себе и плавный переход сверхзвукового потока в дозвуковой, осуществляемый посредством специального обратного сопла, установленного на входе в двигатель. При этом не было бы потерь полного давления. Однако торможение сверхзвукового потока таким способом осуществить в полной мере не удается, в силу чего приходится мириться с существованием ударных волн и наличием соответствующего волнового сопротивления. [c.114]

    При уменьшении скорости набегающего потока до критического значения (Ма = 1) скачок уплотнения вырождается (р1=ря)-В дозвуковом потоке, как уже указывалось выше, скачки уплотнения невозможны. В прямом скачке уплотнения повышение [c.123]

    Уже отмечалось, что процесс преобразования давления в скорость в сверхзвуковом п в дозвуковом потоках протекает без существенных потерь, т. е. примерно при постоянной энтропии и, следовательно, очень близок к идеальной адиабате. Именно поэтому приведенные выше формулы расчета идеального сверхзвукового сопла дают хорошие результаты для реальных сопел. [c.147]

    Существенно, что трение является односторонним воздействием работа сил трения всегда положительна ( Ьтр>0). Поэтому согласно соотношению (6) под влиянием трения дозвуковой поток (М < 1) ускоряется dw > 0), а сверхзвуковой (М > 1)— замедляется dw). Непрерывный переход через скорость звука при воздействии только трением невозможен. [c.182]

    На рпс. 5.1 изображены кривые температуры, плотности, давления, температуры торможения и полного давления в изолированной трубе в функции приведенной скорости Кг при Яг = 0,1 для дозвукового потока, Я] = 2,3 для сверхзвукового потока и к = 1,4. [c.184]

    Подчеркнем, что значительное ускорение дозвукового и торможение сверхзвукового потоков под действием силы трения сопряжено с существенным расходованием полного давления. [c.184]

    Допустим в первом приближении, что коэффициент трения в трубе как в дозвуковых, так и в сверхзвуковых потоках не зависит от числа М, а следовательно, и от приведенной скорости Я. [c.185]

    При сверхзвуковом течении, для которого формула (16) также пригодна, возможны следующие режимы. Если при заданной начальной скорости К приведенная длина меньше максимальной (Х<Хкр), то в конце трубы получается сверхзвуковое течение (Яг > 1). Если приведенная длина равна максимальной (х = Хкр)> то скорость в конце трубы равна критической (Яг = 1). Если же приведенная длина, вычисленная по формуле (17), получается больше максимальной, определенной по формуле (18) при заданном значении приведенной скорости в начале трубы Яь то плавное торможение сверхзвукового потока на протяжении всей трубы невозможно в некотором сечении трубы произойдет скачок уплотнения, за которым установится ускоренное дозвуковое течение. [c.189]


    В канале и при совершении механической работы. Указанные воздействия вызывают изменение числа М как в дозвуковом, так и в сверхзвуковом потоке газа. [c.202]

    В заключение следует отметить, что выше рассматривались йишь сверхзвуковые решетки, на выходе из которых поток дозвуковой. Принципиально возможно построение компрессорных решеток и со сверхзвуковой скоростью на выходе из решетки. Однако такие решетки вряд ли найдут практическое применение, так как они не обеспечивают значительную разность окружных проекций скоростей. [c.91]

    На участке характеристики от точки 4, где приведенная скорость определяется райенством q(kl ) — q > p), до точки 5, где Х1 =0, оба потока дозвуковые, и дополнительными условиями являются v =v = l и (82). Изменение коэффициента эжекции является в этом случае результатом изменения расхода обоих газов. [c.194]

    Таким образом, изменение давления по верхней и нижней ветвям графика предопределяет движение потока дозвуковое (адиабатическое сжатие), когда давление па выходе струи р 2 = = Ро2сж Ркр> либо сверхзвуковое (адиабатическое расширение), когда р02 = Р02сж < Ркр- [c.246]

    Известно, что в сужающемся прямолинейном канале при дозвуковом энергетически изолированном течении газа происходит снижение термодинамической температуры. В винтовом сужающемся канале из-за значительных поперечных градиентов давления создаются условия для повышения скоростей слоев газа у выпуклой стенки по сравнению со скоростями в слоях газа у вогнутой стенки. Таким образом, в винтовом канале не исключено одновременное течение газа как с дозвуковыми, так и со сверхзвуковыми скоростями. Увеличивающаяся неравномерность распределения скоростей приводит уже в каналах сопловых вводов к температурному разделению потоков с более высокими термодинамическими температурами у вогнутой стенки и наиболее низкими в средней части канала по высоте. При дозвуковом течении газа по всей высоте термодинамическая температура будет понижаться по направлению к выпуклой стенке, при сверхзвуковом течении слои газа у этой стенки должны иметь несколько повышенную температуру, чем средние слои. Описанное распределение термодинамической температуры будет сохраняться и после истечения струй в трубу, при этом будут формироваться охлажденный и нагретый потоки. Нечто подобное будет происходить и в тангенциальных сопловых вводах, и, ближе всего к изложенной картине, — в сопловых вводах с лотковым или улиточным выходом. Некоторым подтверждением температурного разделения в каналах сопловых вводов служат данные В. И. Метенина, который наблюдал температурный эффект разделения в вихревой трубе (Д.т = 30 мм) с одним сопловым улиточным вводом при отношении сторон канала соплового ввода 2 3 (больший размер по [c.37]

    Нужно отметить, что истинное давление, которое получается при торможении струи газа, может существенно отличаться от полного давления, определенного но формуле (68). Объясняется это тем, что в действительности торможение струи часто протекает не по идеальной адиабате, а с более или менее существенными гидравлическими потерями. Например, в диффузоре при дозвуковом течении газа уменьшение скорости обычно сопровождается вихреобразованиями, вносящими значительные сопротивления в газовый поток. При торможении сверхзвукового потока почти всегда образуются ударные волны, дающие специфическое волновое сопротивление. Итак, действительное давление в за-торможенно струе газа обычно ниже полного давления набегающей струи. [c.32]

    Ра(1смотрим теперь влияние на реактивную силу непостоянства давлений в плоскости выходного среза двигателя. Построим эпюру давления и скорости на срезе сопла (рис. 1.14). Для простоты остановимся на случае дозвукового истечения. Можно, например, представить себе такое обтекание двигателя, при котором давление вблизи выходного среза понижено, за счет чего местная скорость во внешнем потоке увеличивается. Давление внутри дозвуковой выхлопной струи является примерно таким же, как и па ее границе. [c.53]

    При исследовании обтекания тонких тел на малых згглах атаки как в дозвуковом, так и сверхзвуковом потоке уравнение (100) решают методом малых возмущений (метод линеаризации). [c.98]

    Случай, когда образуется прямой скачок, является напболео простым, так как при этом сразу получается дозвуковое течение. После косого скачка поток замедляется, но, как мы видели, может оставаться сверхзвуковым. В таком случае последующее торможение должно сопровождаться вторым скачком, который может быть как прямым, так и косым. В последнем случае может понадобиться еще один скачок. Итак, полное торможение сверхзвукового потока требует либо одного прямого скачка, либо системы пз нескольких косых скачков, обычно завершаемой слабым прямым скачком. Можио представить себе такую систему скачков, в которой потери меньше, нежели в одном прямом скачке ). [c.137]

    Петров Г. И., Ухов Е. П. Расчет восстановления давления при переходе от сверх,чвукового потока к дозвуковому при различных системах влоских скачков уплотнения,—М., 1947. [c.137]

    Таким образом, сверхзвуковое сопло, предназначаемое для получения сверхзвукового потока, должно состоять иа суокаю-щейся дозвуковой) и расширяющейся (сверхзвуковой) частей (рис. 4.1). В самом узком сечении сверхзвукового сопла (критическом сечении) скорость потока равна звуковой. [c.143]

    Наиболее важно, что ири дозвуковом режиме истечения давление в струе на срезе сопла р . практически равно давлению в окружающей среде рв, так как при этом режиме любое изменение давления в атмосфере в виде волны давления проникает внутрь сопла, вызывая изменение давления перед соплом и соответствующее изменение скорости истечения перестройка потока продолжается до тех пор, пока давление в струе на срезе сопла не сравняется с атмосферным. Поэтому в отлнчпе от сверхзвукового сопла в простом коыфузоре скорость истечения определяется не его формой, а только давлением в камере перед кон-фузором. Таким образом, если известно давление в камере р, то при заданном давлении в плоскости выходного среза рв приведенная скорость истечения находптся непосредственно по формуле (78) гл. I  [c.149]

    Дадим Х.1 какое-либо постоянное значение и будем рассматривать >ь2 как переменную величину, а параметры Т , Ра, Р2 Р21 Ра как функции переменного %2- Выше было установлено на осно-вашш соотношения (6), что трение ускоряет дозвуковой п замедляет сверхзвуковой поток. Тогда нужно считать Хз возрастающим прп дозвуковом и убывающим при сверхзвуковом потоке. Поэтому согласно зависимостям (8), (9) и (10) термодинамическая температура, плотность и статическое давление вдоль изолированной трубы под влиянием трения падают в дозвуковом и растут в сверхзвуковом течении. Из равенства (11) следует, что в критическом сечении при Я2 = 1 полное давление Р2 имеет минимальное значение ), но тогда из выражения (102) гл. I вытекает, что в критическом сечении энтропия достигает максимального значения. Полное давление и плотность заторможенного газа в соответствии с равенством (11) как в дозвуковом, так и в сверхзвуковом потоке вдоль трубы убывают, и только один параметр — температура торможения — не меняется. [c.183]

    На рис. 5.4 представлена зависимость предельного значения приведенной скорости на входе в трубу Я1пр от безразмерной длины трубы хЮ для дозвукового потока при = 0,015 и /с = 1,4. При этих значениях и А  [c.188]

    В предыдущих параграфах было показано, что при подводе тепла или совершении работы трения в движущемся по цилиндрической трубе с дозвуковой скоростью газе происходит увеличение числа М то же явление наблюдается в дозйуковом потоке при течении без теплообмена и трения в суживающейся трубе. [c.201]


Смотреть страницы где упоминается термин Поток дозвуковой: [c.537]    [c.184]    [c.52]    [c.466]    [c.61]    [c.17]    [c.299]    [c.22]    [c.55]    [c.81]    [c.151]    [c.152]    [c.187]   
Тепло- и массообмен Теплотехнический эксперимент (1982) -- [ c.64 , c.71 , c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте