Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Турбулентное смешение

    Существует еще одна модель, с помощью которой также можно объяснить эффект увеличения скорости горения в турбулентном потоке. В мелкомасштабных молях происходит быстрый процесс молекулярного перемешивания, в частности происходит перемешивание продуктов сгорания со свежей смесью. В тех молях, где получающаяся после смешения температура Гер достаточно высока, смесь успевает сгореть по законам объемной реакции раньше, чем в таком медленном процессе, как ламинарное горение. Образующиеся при этом продукты реакции опять смешиваются с молями свежей смеси и, таким образом, происходит распространение пламени. В тех молях, где температура после смешения слишком мала, реакция горения за время существования моля не успевает завершиться. Кроме того, в зоне горения должны также существовать моли, состоящие только из свежей смеси или только из продуктов реакции и в данный момент не участвующие в горении. Можно предполагать, что суммарная скорость горения в этом случае будет значительно превышать скорость ламинарного горения, так как молекулярно-турбулентное смешение происходит с большей скоростью, чем ламинарное. [c.137]


    Скорость распространения пламени зависит также от состояния смеси перед воспламенением. Если смесь неподвижна или течет ламинарно, то процессы переноса во фронте пламени осуществляются за счет молекулярной диффузии и теплопроводности. Такое распространение пламени называют ламинарным. Если горючая смесь находится в турбулентном движении, то молекулярная диффузия начинает играть второстепенную роль — ведущее значение в распространении пламени приобретают процессы турбулентного смешения свежей смеси с продуктами сгорания [18]. Подобное горение называют турбулентным. [c.56]

    Пользуясь уравнениями (И, 110), (И, 112) и (И, 113), можно оценить минимальное время смешения, т. е. время, которое необходимо, чтобы турбулентное смешение завершилось молекулярным. [c.121]

    Эффективность турбулентного смешения в малообъемных роторных аппаратах [c.320]

    Протекание химических процессов в реальных условиях часто осложнено наличием таких факторов, как турбулентный характер течения реагирующих потоков и пространственная неоднородность состава реагирующей смеси и полей скоростей и температур. В настоящее время известно, что знание только средних значений таких флюктуирующих величин, как температура и концентрации реагирующих компонент, недостаточно дпя полного описания сложных процессов химического превращения в условиях неизотермичности и турбулентности даже в тех случаях, когда влиянием химической реакции на гидродинамические характеристики системы можно пренебречь [147]. Необходимость учета флюктуаций температуры и концентраций реагентов и их взаимных корреляций обусловлена тем, что средняя скорость элементарного акта химического превращения в условиях неизотермического турбулентного смешения реагирующих компонент не определяется в виде закона Аррениуса при средних значениях этих величин. Кроме того, наличие флюктуаций приводит к существенному изменению коэффициентов переноса, значения которых определяются в этих случаях не только свойствами реагирующих газов, но и свойствами самого течения [86, 97, 127]. [c.178]

    Смесители для жидкостей работают преимущественно по механизму ламинарного смешения, сопровождающегося увеличением площади поверхности раздела между компонентами и распределением элементов поверхности раздела внутри объема смесителя. Конструкция такого смесителя зависит от вязкости смесей [4]. Например, для низковязких жидкостей применяют лопастные и высокоскоростные диспергирующие смесители. При малой вязкости смеси существенную роль может играть турбулентное смешение. Для смесей со средними значениями вязкости используют разнообразные двухроторные смесители, например смеситель с 2-образными роторами. Такой смеситель представляет собой камеру, образованную двумя полуцилиндрами. В камере установлены два ротора, вращающиеся навстречу друг другу с различной скоростью. Обычно отношение скоростей вращения роторов составляет 2 1. Смешение происходит вследствие взаимного наложения тангенциального и осевого движений материала. Чтобы исключить возможность образования застойных зон, зазор между роторами и стенкой камеры делают небольшим — около 1 мм. Такие смесители используют для смешения жидкостей с вязкостью 0,5—500 Па-с. К двухроторным относятся также смесители с зацепляющимися роторами, вращающимися с одинаковой скоростью. Двухроторные смесители широко используют для изготовления наполненных пластмасс, а также для смешения различающихся по вязкости жидкостей и паст. [c.369]


    Физическая причина существенной зависимости величины средней скорости химического превращения не только от средних значений определяющих параметров, но и от их флюктуаций состоит в том, что при турбулентном смешении химически реагирующих потоков газа или плазмы "смешение в среднем", понимаемое как установление турбулентных профилей скорости течения и температуры, еще не означает достижения полной молекулярной однородности [82, 84, 86]. [c.178]

    При высоких температурах плазменных струй характерное время многих реакций сравнимо с характерным временем смешения и значительные превращения реагентов могут происходить на участке незавершенного турбулентного смешения реагирующих потоков. В пределе "быстрой" химической реакции [439] процессы химического превращения полностью определяются процессами переноса. При рассмотрении реакторов-смесителей с коаксиальным вводом дозвуковых потоков реагентов и плазмы смешение происходит в ограниченном пространстве реактора, поэтому возможно образование зон рециркуляции [82, 84, 86]. Наличие в потоке таких зон делает необходимым пользоваться системой уравнений Навье—Стокса, а не приближением пограничного слоя. [c.184]

    Теплоотдача и потери давления. Теплоотдачу и потери напора для теплоносителя, движущегося в трубах, можно вычислить непосредственно (например, с помощью рис. П3.2, ПЗ.З). Гораздо сложнее определить эти величины для перекрестного потока в межтрубном пространстве, особенно если приходится иметь дело с вязкой жидкостью (как смазочное масло, для которого число Рейнольдса значительно ниже 2000). К счастью, при перекрестном токе турбулентное смешение, обусловливаемое геометрическими нерегулярностями, все еще [c.171]

    Здесь I — путь турбулентного смешения. [c.371]

    Газовым эжектором называется аппарат, в котором полное давление газового потока увеличивается под действием струи другого, более высоконапорного потока. Передача энергии от одного потока к другому происходит путем их турбулентного смешения. Эжектор прост по конструкции, может работать в широком диапазоне изменения параметров газов, позволяет легко регулировать рабочий процесс и переходить с одного режима работы на другой. Поэтому эжекторы широко применяются в различных областях техники. В зависимости от назначения эжекторы выполняются различным образом. [c.492]

    Образование сажи при турбулентном горении происходит в специальных печах. Природный газ или жидкое сырье (в парообразном или распыленном состоянии) и воздух подаются в печь отдельными потоками и смешиваются в печи путем турбулентной диффузии. При этом, как и при ламинарном диффузионном горении, сажа образуется в объеме углеводорода, непосредственно примыкающем к фронту горения. Поэтому при предварительном молекулярном смешении углеводородного сырья с воздухом сажа вообще не получается, а при турбулентном смешении в печи выходы и дисперсность получающейся сажи существенно зависят от условий этого смешения. [c.546]

    Считают, что обычно при промышленном применении сжигания топлива в турбулентном потоке решающее значение имеют аэродинамические факторы, в частности турбулентное смешение, а не химизм сгорания [1]. Поэтому для более глубокого понимания природы этих пламен важное значение имеют исследования хоЛодной струи. Можно убедиться, что многие системы сгорания в струе удается удовлетворительно моделировать при помощи холодных струй, хотя в литературе отмечается [2], что обычно невозможно создать изотермическую модель, полностью гидравлически подобную системе сжигания с выделением тепла. Все н<е существуют три случая, когда принятие соответствующей системы допущений позволяет получить при помощи модели правильные результаты в отношении столь важного показателя, как увлечение, инжекция струи. Одним из таких случаев является система, в которой поток высококалорийного топлива поступает через сопло малого диаметра в большую камеру с медленно движущимся потоком воздуха [3]. Второй случай — это система, в которой объемные расходы воздуха и топлива выражаются величинами одинакового порядка и оба потока поступают в турбулентную систему через отверстия приблизительно одинаковых линейных размеров [4]. Третий случай, указываемый цитируемым автором, относится к специальному устройству, когда расход находится в переходной области между ламинарным и турбулентным режимами [c.296]

    Для получения дополнительных сведений относительно струи, помимо ее формы, принимают допущение о природе турбулентного смешения. Это допущение обычно связано с механизмом переноса количества движения (или завихренности) в поперечном направлении потока жидкости. Так, необходимо постулировать, каким образом происходит процесс микромасштабного смешения. Так как процесс смешения непосредственно связан с турбулентностью, принимаемая система допущений должна одновременно -объяснить турбулентные колебания элементарных объемов жидкости. [c.298]


    На рис. 5 представлены данные, показывающие изменение осевой скорости по длине струи. Начальный горизонтальный участок кривой представляет зону установления потока, где еще существует потенциальное ядро. За вершиной ядра турбулентное смешение происходит по всему поперечному сечению струи. Указанные выше значения константы Сг были получены как точка пересечения двух линий, представленных на рис. 5. Достигается прекрасное соответствие экспериментальным данным. [c.306]

    Обычно считают, что скорость сгорания в турбулентных диффузионных пламенах лимитируется в основном турбулентным смешением скорость химической реакции не только не лимитирует этого процесса, но даже не играет сколько-нибудь важной роли. Это уже отмечалось выше. Однако явление турбулентности еще недостаточно изучено. Дополнительные осложнения возникают в тех случаях, когда турбулентная система включает зону горения, которая является причиной изменения объема. Поэтому логично пойти по пути сравнения экснериментальных исследований пламени с экспериментальными и теоретическими исследованиями турбулентности для выявления, какие именно факторы играют важную роль и какими можно пренебречь. В дальнейшем изложении в первую очередь будет рассмотрена стабильность пламени. [c.326]

    Прандтль разделял поток на две области пристенный слой у стенки, где наблюдается молекулярный обмен, и ядро потока,, где преобладает турбулентное смешение. Для вязкого пристенного слоя [c.9]

    Как отмечается многими авторами, главное затруднение теории турбулентного горения — это правильный учет влияния турбулентности на смешение до молекулярного состояния. Данная проблема далека от своего решения и в теориях турбулентного смешения без реакций (теории струй и т. п.). Каков же механизм влияния турбулентности на процессы молекулярного переноса Хаотическое движение среды, каким является турбулентность, при отсутствии процессов молекулярного переноса приводит к искривлению изотерм или поверхностей постоянной концентрации. Это искривление изотерм прогрессивно увеличивается с течением времени однако из-за неразрывности среды первоначально связанные поверхности остаются связанными, они могут только растягиваться, искривляться, сморщиваться и т. п. При горении возмож- [c.9]

    Таким образом, уравнение, которое описывает процесс турбулентного смешения и горения, будет Т = <Г>, где < > знак усреднения)  [c.12]

    Рассмотрим гипотетическую модель строения свободного диффузионного факела, условно разделив длину факела на две зоны. В первой зоне происходят в основном процес-ты турбулентного смешения газа с воздухом и воспламенения образовавшейся смесп. Для второй (последующей) зоны характерны более медленные процессы догорания. В этой зоне факела под действием турбулентных пульсаций еще продолжается процесс смешения (главным образом за счет молекулярной диффузии), а горение протекает при малых концентрациях горючего газа и воздуха. [c.14]

    Однако следует иметь в виду, что при смешении газов в известные моменты могут возникнуть локальные более высокие пересыщения, особенно в случае турбулентного смешения двух свободных газовых потоков, например при впускании струи горячего пара в холодный атмосферный воздух. Температура и парциальное давление в каждой точке зоны смешения определяются с помощью тех же уравнений. Однако, как показал Амелин , аначение п изменяется от п=0 на границе между зоной смешения я одним газом до п = оо на границе между зоной смешения и другим газом. Поэтому для некоторого значения п — /пая которое МО- [c.32]

    Оптимальные условия для протекания быстрых химических реакций создаются в случае выполнения отношения характерных времен химической реакции и смешения Тсм Тх. Изменяя геометрию (дизайн) зоны реакции, динамику, а также физические параметры жидких потоков, можно оптимизировать значения характеристик турбулентного смешения в соответствии со спецификой процесса, тем самым воздействуя на характер его протекания. Осуществление быстрых процессов в режиме вытеснения в турбулентных потоках, ограниченных непроницаемой стенкой, позволяет экспериментально оценить кинетические константы скорости реакции (показано на примере хлорирования бутилкаучука). [c.57]

    В процессе сгорания топлива, начинающемся в точке 2, можно выделить три фазы. Фаза быстрого сгорания (01) на участке 2—3, в течение которой давление и температура быстро повышаются в результате сгорания значительной части топлива, испарившегося в период 0, и продолжающего поступать через форсунку. Фаза замедленного сгорания (0п), когда еще продолжается повышение температуры, но давление несколько снижается вследствие быстрого увеличения объема камеры сгорания из-за движения поршня вниз. В связи с этим точка 4 максимума температуры на диаграмме располагается правее точки 3 максимума давления. Скорость сгорания в фазе 0и определяется главным образом интенсивностью смешения паров топлива с воздухом. Фаза догорания (01п) начинается за точкой 4 и может составлять значительную часть такта расширения. Скорость сгорания топлива в этой фазе лимитируется процессами диффузии и турбулентным смешением с воздухом остатков несгоревшего топлива и продуктов его неполного сгорания, образовавшихся в зонах местного пе-реобогащения смеси. [c.156]

    В работах В. Компаниец с соавт. было отмечено, что при исследовании процессов химического превращения, происходящих в условиях неизотермического турбулентного смешения реагирующих потоков, не всегда необходимо знать детальную картину движения среды, в которой протекают указанные процессы. В этом случае гидродинамические условия и пространственное распределение компонентов можно описывать с помощью осредненных величин. Такое упрощение заведомо оправдано, если исследователя интересует лишь кинетика самого химического превращения (в нашем случае межфазного переноса компонента) и явлений переноса. При этом пульсации случайных полей скорости, температуры и концентрации учитывают феноменологически с помощью эффективных коэффициентов переноса. [c.142]

    Бикбулатов И. X., Панов А. К., Шулаев Н. С. Исследование турбулентного смешения жидкости в малообменных роторных смесителях.— Деп. в ВИНИТИ 19.12.94, № 2944-Д94. [c.305]

    Балабудкин М. А. и др. // Теоретические основы хим. технологии.— 1990.— Т. 24, № 4.— С. 502 Исследование турбулентного смешения жидкости в малообменных роторных смесителях. Деп. в ВИНИТИ 19.12.94, № 2944-Д94. [c.321]

    Учитывая изложенное выше, можно свести задачу исследования процессов турбулентного смешения реагирующих потоков к задаче определения ФСРПВ всех случайных полей. [c.179]

    Заметим, что основные параметры уравнения (3.22) объединены в три безразмерные группы (число Нуссельта Ко1к, число Прандтля Ср 1 к и число Рейнольдса Ь01ц). Из уравнения (3.22) следует, что коэффициент теплоотдачи увеличивается с увеличением числа Рейнольдса несколько медленнее, чем по линейному закону (показатель степени меньше единицы). Это объясняется тем, что поперечные составляющие скорости смещения, обусловленные турбулентностью, увеличиваются с повышением осевой скорости не линейно, а более медленно. Поскольку обмен теплом через пограничный слой зависит от того же самого процесса турбулентного смешения, что и обмен количеством движения, определяющий коэффициент трения, и так как коэффициент трения обратно пропорционален числу Рейнольдса в степени 0,2, можно заключить, что коэффициент теплоотдачи должен увеличиваться пропорционально числу Рейнольдса в степени 0,8 23 . [c.57]

    Существование лиминарного течения возможно только при малых Ке. При Не > Кекр устойчивость течения нарушается, и движение отдельных малых объемов газа становится неупорядоченным, пульсирующим. Мгновенное значение вектора скорости в той или иной точке потока отличается от значения, осредненного по времени. Точно так же отличаются мгновенные и средние значения давления, плотности, концентрации реагирующих веществ и т. д. Турбулентное горение представляет собой нестационарный процесс турбулентного смешения продуктов сгорания и свежей смеси и реагирование последней вследствие повышения ее температуры. В этих условиях закономерности ламинарного распространения реакции теряют свою силу. Решающими факторами становятся турбулентные пульсации и связанная с ними интенсивность перемешивания продуктов сгорания со свежей смесью. Если в теории ламинарного горения основные трудности вызваны отсутствием точных кинетических параметров, которые должны быть подставлены в систему уравнений, то в теории турбулентного горения необходимая система уравнений даже и не составлена. В настоящее время не только отсутствует возможность создания замкнутого расчета, но нет и единого понимания механизма процесса. [c.134]

    Смешение — это операция, приводящая к уменьшению неоднородности системы. Этого можно достичь, только вызвав физическое перемещение ингредиентов. Смешение включает три основные типа движения. Бродки [2] назвал это движение диффузией и классифицировал его типы как молекулярную, турбулентную и объемную диффузию. Молекулярная диффузия — это спонтанно протекающий процесс, вызванный наличием градиента концентрации (химический потенциал). Это доминирующий механизм при смешении газов и пизковязкпх жидкостей. При турбулентном смешении молекулярная диффузия накладывается на беспорядочное вихревое движение, которое в свою очередь может накладываться на объемную диффузию , или конвективное течение. [c.182]

    Предложен [365] новый доступный и удобный непрерывный способ производства компаундированных дорожных и кровельных битумов путем смешения трех и более компонентов в потоке. Схема системы приведена на рис. 119. Предусмотрено наличие трех отдельных потоков (базового битума, разжижителя и присадки) и двух зон смешения. В первом узле смешения 23 осуществляется турбулентное. смешение разжижителя и присадки во втором узле 26 — базового битума со смесью разжижителя и присадки, полученной после первой зоны смеше1 ия. Хороший эффект достигается при противоточном смешении. Каждый поток оборудован емкостью, насосом, регулятором давления, счетчиком, манометрами, клапанами и задвижками. В конце второй зоны смешения установлен смеситель 27 [92]. Для получения, например, разжиженного битума типа МС в количестве 107 поддерживается соотношение базовый битум разжижитель (керосин) присадка для повышения когезионных свойств, равное 90 8 2. Наличие зоны смешения присадки с разжижителем позволяет тщательно перемешивать компоненты. Система позволяет осуществить автоматическое управление процессом при помощи вискозиметра, установленного на выходе товарного продукта, путем автоматического корректирования расхода одного из компонентов. Автоматическое смешение в потоке позволяет получать продукты требуемых качеств, сокращает энергетические затраты и позволяет повысить производительность. [c.349]

    Скуайр [18], анализируя различные теории турбулентности свободной струи, выдвинул ряд важных возражений. Он отметил, в частности, невозможность провести четкую границу между результатами, которые могут быть выведены из анализа размерностей, и результатами, выведенными из различных теорий. Он предполагает также, что, поскольку различные выдвинутые теории не обнаруживают общего совпадения с экспериментальными данными, подобные совпадения, отмечаемые в отдельных случаях, могут быть чисто случайными. Вместе с тем он считает, что современные теории слишком просты для объяснения столь сложного явления, как турбулентное смешение. В заключение он отмечает, что интегрирование теоретически выведенных дифференциальных уравнений может маскировать расхождение с экспериментальными данными. Специалисты, использующие опубликованные данные для конструирования или расчетов, должны полностью учитывать все возможные последствия маскировки расхождений между теорией и экспериментом в результате интегрирования таких уравнений. Внолне возможно принять совершенно абсурдную теорию свободной [c.302]

    С другой стороны, опыты, подобные опубликованным Руммелем [26], показывают, что с увеличением угла сходимости струи (конвергенции) турбулентное смешение в сильной степени возрастает. Некоторые из этих результатов представлены на рис. 13. В этих опытах к воздуху добавляли 0,5% водорода, моделирующего топливо, и изучали распределение концентраций в холодной системе. Вполне отчетливо видны характер изменения концентрации в результате изменения скорости и угла подачи струи водорода. Например, увеличение угла, под которым сталкиваются струи [c.311]

    Квазиравновесные плазмохнмнческве процессы проводят, как правило, в ограниченных потоках плазмы (реже в своб. струях плазмы). Потоки плазмы и сырья вводят в реактор, как правило, раздельно и производят их смешение обычно в условиях интенсивной турбулентности. Прн т-рах 3000-5000 К скорости плазмохим. р-ций возрастают в такой степени, что их характерные времена т, становятся меньше характерных времен т тепло- и массопереноса. Вследствие этого кинетика плазмохим. процесса на стадии турбулентного смешения практически полностью определяется кинетикой турбулентного смешения сырья с плазмой. Доля превратившегося во время смешения сырья зависит от энергии активации проводимой р-ции, возрастает с повышением т-ры плазмы и при достаточно высоких т-рах может достигать единицы. Т. обр., стадия турбулентного смешения может оказать определяющее влияние на осн. показатели плазмохим. процесса-степень и селективность превращения. Совр. теория турбулентного смешения не позволяет пока предсказать характер и степень этого влияния, поэтому возрастает роль эмпирич. и полуэмпирич. подходов. Так, для нахождения времени смещения реагента с плазмой на мол. уровне используют методы быстрой хим. р-ции и быстрого физ. процесса , характерные времена к-рых мно- [c.554]

    Измерения на жидких металлах показали, что для турбулентного тотока через кольцевые трубы теплообмен, вызванный турбулентным смешением, становится заметным и его следует учитывать, когда параметр Ре Рг превы-372 [c.372]

    В.П. Захаров, К С. Минскер, Ал.Ал. Берлин Башкирский государственный университет, г. Уфа, Россия Институт химической физики РАН, г. Москва, Россия Характер протекания быстрых процессов (быстрые химические реакции, смешение жидких потоков, эмульгирование, экстракция и т.д.) во многом определяется диффузионю.ши затруднениями, связанными с использованием высоковязких сред, наличием поверхности раздела фаз, а при протекании быстрых химических реакций - значительной величиной константы скорости реакции. Практически единственным способом оптимизации качества полз чаемых продзпсгов, а также управления протеканием быстрых процессов является интенсификация турбулентного смешения жидких потоков в аппарате. Причем рентабельность производства в целом определяется продолжительностью того или иного процесса, т.е. временем пребывания реагентов в аппарате. Решением этих и многих других проблем является проведение процессов, лимитируемых массообменом, в турбулентных потоках, ограниченных непроницаемой стешсой, т.е. в трубчатых аппаратах вытеснения, но в турбулентных потоках. [c.57]


Библиография для Турбулентное смешение: [c.590]   
Смотреть страницы где упоминается термин Турбулентное смешение: [c.353]    [c.94]    [c.79]    [c.612]    [c.426]    [c.298]    [c.303]    [c.430]    [c.168]    [c.108]    [c.436]    [c.379]    [c.33]   
Теория горения и топочные устройства (1976) -- [ c.144 ]

Эффективные малообъемные смесители (1989) -- [ c.6 , c.16 , c.17 , c.72 ]




ПОИСК







© 2025 chem21.info Реклама на сайте