Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факелы

    При сжигании топлива образуется факел, температура, размеры и конфигурация которого существенно влияют на теплоотдачу. Факел представляет собой струю газов со взвешенными в ней рас- [c.116]

    Температура поглощающей среды непрерывно меняется как в направлении движения газов, так и от факела к ограничивающим поверхностям, причем это изменение подчиняется сложному закону. [c.117]

    Для лучшего распыления топливо подается в камеру сгорания газотурбинного двигателя при помощи центробежных форсунок под давлением 50 кГ/см и выше. Из форсунки топливо выходит со скоростью около 30 м сек, образуя факел тонко распыленного топлива. Распыление жидкого топлива сопровождается резким увеличением размера поверхности капель топлива и зависит, таким образом, от коэффициента поверхностного натяжения, величина которого для некоторых топлив приведена в табл. 10. [c.72]


    В воздушно-реактивном двигателе часть топлива сгорает в результате самовоспламенения, так как вследствие турбулентности отдельные объемы холодной горючей смеси попадают в факел пламени и нагреваются до температуры, превышающей температуру самовоспламенения смеси. Чем большая доля топлива сгорает вследствие самовоспламенения смеси, тем выше скорость сгорания смеси в двигателе. Следовательно, для увеличения скорости сгора- [c.81]

    I — нестабильный конденсат И — газ сепарации III — газ стабилизации Л —газ на факел V — широкая фракция VI — стабильный конденсат. [c.280]

    Высокий к. п. д. современных трубчатых печей кроме совершенствования самой конструкции может быть достигнут также благодаря более полному использованию теплоты отходящих дымовых газов для предварительного подогрева воздуха, подаваемого на горение, а также проведением ряда мероприятий улучшения конструкции форсунки предварительного перемеш ивания газообразного топлива с воздухом установки форсунок в карборундовом муфеле. Карборунд катализирует процесс горения, способствует уменьшению коэффициента избытка воздуха и сокращению длины факела, поэтому топливо успевает сгореть в самом муфеле [35]. [c.106]

    Можно показать, что вероятность появления в любой наугад взятой капле факела будет обнаружено ровно т частиц, будет определяться следующей формулой  [c.143]

    Это уравнение определяет вероятность того, что любая наугад взятая капля факела распыла из размерного интервала (/ - 2) содержит ровно т частиц из размерного интервала г -г2). [c.144]

    Эта формула позволяет найти среднее число частиц в одной капле факела распыла как момент первого порядка процесса Пуассона  [c.144]

    Скопление большого количества раскаленных частиц сажи может дать заметное излучение, так что при достаточной толщине факела пламени (приблизительно 1—2 м) лучеиспускание его приближенно. может рассматриваться как лучеиспускание твердого тела, имеющего ту же температуру [c.153]

    При сжигании угольной пыли лучеиспускание факела увеличивается с увеличением числа горящих угольных частиц. [c.153]

    Степень черноты факела зависит от многих факторов и должна определяться опытным путем с помощью радиометров.— Прим. ред. [c.153]

    Конструкция обмуровки топки определяется в данном случае способом организации теплопередачи (непосредственное излучение факела или конвекция), назначением обогреваемого аппарата, видом используемого топлива, характером производства и, наконец, условиями расположения оборудования. В зависимости от направления движения продуктов сгорания топки бывают с нижним, передним или верхним обогревом. Собственно топка может размещаться либо непосредственно в обмуровке аппарата, либо вне его. Во втором случае тепло лучеиспускания пламени не используется или используется только частично, а тепло передается лишь кон- [c.255]


    На фиг. 172 изображена конструкция с вертикальным расположением горелки, факел которой направлен снизу вверх. В этом [c.261]

    Размещение трубок радиационной секции должно быть спроектировано так, чтобы трубки лишь частично омывались продуктами сгорания, Прп этом" они должны быть достаточно удалены от факела, чтобы равномерно воспринимать теплоизлучение во избежание перегрева и обугливания нагреваемого сырья. [c.264]

    Сброс газа при срабатывании клапана был запроектирован через стояк (трубу) высотой 18,5 м. Чтобы исключить повышение давления в резервуаре, газообразный этилен компрессором забирали из резервуара, подвергали охлаждению в холодильной установке и возвращали в резервуар. При этом допускалось, что в случае - остановки холодильной установки давление в резервуаре может повыситься до давления срабатывания предохранительного клапана. После окончания разработки проекта пришли к выводу, что при низкой скорости ветра этилен во время срабатывания предохранительного клапана, выходя через верх трубы, может без рассеивания опуститься до уровня земли и воспламениться. Использовать трубу для сброса газа в качестве факела оказалось невозможным, так как она была слишком низка и невозможно было ее нарастить, поскольку прочность опор и всей конструкции была недостаточной. Решили подвести в стояк водяной пар для обеспечения рассеивания холодного газа. При этом не учли, что в трубе может образоваться конденсат. [c.32]

    В связи с происшедшим был осуществлен сброс газа на факел с подачей пара к горелке факела для обеспечения его бездымного горения. Несколько лет спустя снова было замечено повышение давления в резервуаре. В этом случае труба была закупорена обломками футеровки, сцементированной льдом. После этого изменили конструкцию трубы. [c.32]

    Факельное хозяйство необходимо проектировать с учетом максимального улавливания и утилизации газов и паров, сбрасываемых в линию газ на факел , а также конденсата нефтепродуктов, образующегося в самой факельной системе. [c.64]

    На одной из установок атмосферно-вакуумной перегонки нефти ремонтировали сырьевой насос, поэтому установка работала с пониженной производительностью. Меры же, необходимые для нормальной эксплуатации установки при таких условиях, не были приняты, что привело к повышению температуры на тарелках ректификационной колонны и в ребойлере, увеличению подачи циркуляционного орошения и давления в стабилизаторах сверх допустимых пределов. Повышение давления в стабилизаторе вызвало срабатывание предохранительных клапанов. Для ускорения снижения давления открыли задвижку сброса газ на факел с емкости орошения и предохранительный клапан для сброса в атмосферу. Открывая клапана вручную, в отсутствие дублера, оператор не надел противогаз, что и привело к несчастному случаю. [c.67]

    Авария развивалась следующим образом. В отделении окисления цикло-гексана на одном из реакторов обнаружили большую трещину. Реактор заменили временной обводной линией (байпасной), которая соединяла работающие реакторы. На байпасной линии по обоим ее концам установили трубчатые пружины. Поскольку в батарее каждый реактор находился ниже предыдущего для обеспечения самотека, байпасную линию пришлась согнуть (она была изготовлена из трубы диаметром 0,51 ми опиралась на стойки). Незадолго до аварии производство циклогексана временно было приостановлено. При пуске его байпасная линия оказалась в условиях большего давления, чем в нормальных условиях эксплуатации. Очевидно поэтому обе трубчатые пружины сильно деформировались и сломались. Через разрушенные участки циклогексан, температура которого была выше точки кипения, вырвался наружу и образовал облако диаметром около 200 м толщина облака в некоторых местах достигала 100 м. Через 45 с облако загорелось, по всей вероятности, от печи водородного цеха. Последовавшая за этим мгновенная вспышка от быстрого распространения факела вызвала сильную ударную волну, распространившуюся в течение нескольких секунд. Взрыв произошел на высоте 45 м от уровня земли. Взрывом были разрушены резервуары и конденсаторы, а также здания на территории завода. Пожар охватил территорию в 45000 м высота пламени достигала 100 м. Результаты расследования показали, что в технологическую схему были внесены изменения без согласования с проектировщиками и специалистами соответствующей квалификации. [c.70]

    Эксплуатировать печи с излучающими стенами из панельных горелок могут только лица, сдавшие в установленном порядке экзамен на право обслуживания топочных устройств на газовом топливе и специально проинструктированные, а следовательно знающие конструкцию и режим работы панельных горелок. Для розжига панельных горелок, как правило, применяют запальник. При розжиге ручным способом через смотровое окно вводят зажженный факел, помещают его перед одной из горелок, открывают вентиль подачи газа и убеждаются в том что горелка зажжена. Дальнейшее зажигание горелок производят по принципу последующая от предыдущей . В розжиге блока панельных горелок должны участвовать два человека. При появлении хлопков горелку отключают и -прочищают сопло. [c.80]

    Газы из аппаратов сбрасывают на факел или в газосборную сеть. Пробы газа отбирают пробоотборниками с исправными игольчатыми вентилями, рассчитанными на максимальное давление газа в аппарате. Проверяют вентили и испытывают пробоотборники на прочность не реже одного раза в 6 мес. Ответственность за безопасное содержание, эксплуатацию и своевременное испытание пробоотборников несут начальник и механик объекта (цеха, лаборатории), в чьем ведении они находятся. [c.89]


    Насосные необходимо укомплектовать грузоподъемными устройствами, рассчитанными на подъем наиболее тяжелых деталей оборудования. Не разрешается загромождать проходы между насосами материалами, оборудованием или какими-либо предметами. Насосы и трубопроводы в насосных помещениях следует располагать так, чтобы удобно было их обслуживать, ремонтировать и осматривать. При эксплуатации насосных устанавливают систематический надзор за герметичностью насосов и трубопроводов. Остатки продуктов из трубопроводов, насосов и другого оборудования по закрытым коммуникациям отводят за пределы насосной жидкие — в специально предназначенную емкость, а пары и газы — на факел или свечу. Арматуру для насосов выбирают по условному давлению в соответствии с паспортом. На нагнетательном трубопроводе каждого центробежного насоса устанавливают обратный клапан. При переключении с работающего насоса на запасный проверяют правильность открытия соответствующих задвижек и подготовленность насоса к пуску. Для отключения резервных насосов от всасывающих и напорных коллекторов используют только задвижки. Запрещается устанавливать для этой цели заглушки. Резервный насос должен находиться в постоянной готовности к пуску. [c.104]

    Приборы для контроля и управления процессом горения. В эту важную группу приборов входят устройство дистанционного -зажигания факела УЭФ-2 для дистанционного розжига четырех дежурных горелок факельной трубы высотой 60 м, а также система аналогичного назначения типа СЭФ для факела высотой до 120 м электрозапал-сигнализатор ЭЗС-Д для розжига газовых горелок печей, технологических печей и сигнализации погасания пламени блок управления горением в топках котельных установок БУГ-500 и блок контроля пламени для этих же котлов сигнализатор погасания пламени СПП-1 для печей технологических установок и топок под давлением. [c.172]

    Максимальная температура сбрасываемых газов в общезаводскую факельную систему должна быть не более 200°С при условии, что температура сбрасываемых газов на входе в газгольдер будет не выше 60 °С. Для предотвращения попадания сбрасываемого газа в газгольдер с температурой выше 60°С предусматривают блокировку по сбросу газа на факел, минуя газгольдер. Необходимость подогрева или охлаждения факельных газов определяют в каждом конкретном случае. Под максимальным сбросом горючих газов в общую факельную систему понимают единовременный возможный максимальный сброс от предохранительных клапанов плюс технологические отдувки. В общую факельную систему можно направлять, если это необходимо, сбросы горючих газов и паров, имеющих температуру не ниже минус 30°С и не выше 200°С, содержащих не более 3% (об.) кислорода и не более 8% (масс.) сероводорода. [c.184]

    Насос или компрессор можно останавливать на ремонт и осуществлять разборку только после письменного распоряжения начальника цеха (установки). Перед началом ремонта насосы и компрессоры освобождают от продуктов, устанавливают заглушки на приемном и нагнетательном трубопроводах, промывают водой, продувают паром, воздухом или инертным газом. Перед ремонтом газомотокомпрессоров дополнительно устанавливают заглушки на линиях топливного газа и продувки на факел, снимают провода от зажигания и выключают магнето. При ремонте паровых поршневых насосов и насосов с приводом от паровой турбины необходимо ставить заглушки и на трубопроводы острого и мятого пара. [c.227]

    Загрязнение воздуха диоксидом углерода от выхлопных газов автомобилей, от факелов нефтеперерабатывающих заводов, горнометаллургических предприятий, от факелов нефтепромыслов создает парниковый эффект, В результате чего уменьшается рассеяние н отражение солнечного света, следовательно возможен перегрев атмосферы. [c.7]

    Выбросы вредных веществ подразделяют также на организованные и неорганизованные. Организованные выбросы — это выбросы, которые отводятся от мест выделения системой газо-отводов, что позволяет применять для их улавливания газопылеулавливающие установки. На нефтеперерабатывающих и нефтехимических предприятиях основные источники организованных выбросов —дымовые трубы технологических печей, печей сжигания отходов, ТЭЦ, котельных свечи газомоторных компрессоров, пароэжекционных установок, регенераторов катализатора, электрофильтров, окислительных кубов, хвостовых выбросов, циклонов, скрубберов, абсорберов, факела вентиляционные трубы и аэрационные фонари производственных помещений, грануляционных башен, воздушки емкостей и аппаратов, диффузоры градирен. [c.16]

    На нефтеперерабатывающих и нефтехимических предприятиях производственные отходы, содержащиеся в газовых выбросах, как правило, не утилизируют, а сжигают на факелах и выбрасывают в атмосферу. В табл. 2 приведена характери- [c.16]

    Не менее 45% (об.) эти- В основном сжигают на лена факелах [c.18]

    Двухкамерная вертикальная печь с настенным боковым экраном, изображенная на рис. 59, характерна расположением форсунок в поде печи. Форсунки установлены под углом к перегородке, в результате чего факел бьет в перегородку и как бы прилипает к ней. Это явление принято называть настиланием пламени. Настильное пламя получает почти плоскую конфигурацию, вследствие чего эти печи компактны, так как позволяют максимально приблизить пламя к экрану. Тепловые напряженности поверхности нагрева в этих печах распределены достаточно равномерно и мало меняются как по длине, так и по высоте печей. [c.94]

    Задача теоретического исследования этого фрагмента состоит в определении среднего размера капель в факеле распыла, если волны неустойчивости инициируются выходом частиц на свободную поверхность струи, и в определении вероятности вхождения элементов тетерофазы в капли факела распыла. [c.140]

    Важным показателем в данной модели является распределение частиц микрогетерофазы по каплям факела распыла во-пер-вых, он указывает на собственно механизм гетерогенного надрыва шейки и, во-вторых, имеет существенное технологическое значение. К примеру, если ГА-техника, работающая в режиме распыления, используется в химическом синтезе, где один из реагентов — газ, то, очевидно, что площадь контакта реагентов [c.142]

Рис. 3.9. Зависимость среднего диаметра капель в факеле распыла суспензии (1-3) и гомогегшой жидкости (4) от расхода жидкости 1 — суспензия со средним диаметром частиц 40 мкм 2 — то же с размером частиц 80 мкм 3 — то же с диаметром частиц 120 мкм 4 — гомогенный раствор ПАВ Рис. 3.9. Зависимость <a href="/info/1467621">среднего диаметра</a> капель в <a href="/info/958442">факеле распыла</a> суспензии (1-3) и гомогегшой жидкости (4) от <a href="/info/94079">расхода жидкости</a> 1 — суспензия со <a href="/info/307196">средним диаметром частиц</a> 40 мкм 2 — то же с <a href="/info/135360">размером частиц</a> 80 мкм 3 — то же с <a href="/info/328311">диаметром частиц</a> 120 мкм 4 — гомогенный раствор ПАВ
    Для возбуждения рабочей дуги между элек гродом 4 и разрезаемым металлом 5 с помощью осциллятора ОСЦ зажигается вспомогательная дуга между электродом и соплом плазмотрона, которая вьщувается из сопла в виде плазменного факела. При касании факела вспомогательной дуги разрезаемого металла возникает режущая рабочая дуга 6. Вспомогательная ду1а при этом автоматически отключается. [c.119]

    Зажигать форсунки печи без предварительной продувки камеры сгорания водяным паром запрещено. Продувку следует ве сти не менее 15 мин с момента появления пара из дымовой трубы. Нарушение этого требования, как правило, приводит к аварии (рис. 2). Для многокамерных печей допустима продувка камер сгорания не менее 20 мин, считая с момента открытия последней задвижки. Зажигают форсунки печи только факелом или запальником. При зажигании форсунки, работающей на жидком топливе, необходимо сначала поднести к ней зажженный факел, затем открыть подачу пара и воздуха и только после этого постепенно открыть вентиль на топливном трубопрог воде у форсунки. [c.78]

    На одном из нефтеперерабатывающих заводов при загрузке газомоторного компрессора 10 ГКН-4/1-55 произошел взрыв нагнетательного трубопровода четвертой ступени сжатия, на участке длиной 2,5 м (от обратного клапана до задвижки). Взрыв был вызван подсосом воздуха в ци-линдр четвертой ступени компрессора через неплотно закрытую задвижку нэ продувочной свече, которая согласно проекту была врезана на всасывающей линии четвертой ступени сжатия, и образованием взрывоопасной смеси воздуха с парами смазочных масел. В четвертой ступени компрессора при степени сжатия до 40 температура компримированного воздуха в нагнетательном трубопроводе может в течение 1—3 мин превышать 300 С, до момента поступления компримируемого газа из низких ступеней. Температура же самовоспламенения паров масла составляет 268 °С. Комиссия по расследованию аварии предложила изменить технологическую схему, чтобы исключить возможность попадания воздуха в компрессор через продувочную свечу разработать проект и выполнить обвязку компрессоров, обеспечивающую сброс избыточного давления газа на факел и остаточного на свечу при остановке компрессора установить обратный клапан на общей нагнетательной линии, соединяющей компрессорный цех факельного хозяйства с общезаводской магистралью компримируемого газа. [c.101]

    Факельные трубы должны быть оборудованы электрозапаль-ным устройством с дистанционным управлением и автоматическим зажиганием факела, горелками постоянного горения, подводом топливного газа, подводом водяного пара, устройством для бездымного сжигания газов. [c.186]

    В случае увеличения температуры газов, поступающих в газгольдер, выше 60 °С должер быть обеспечен автоматический перепуск их в факельную трубу. Температуру газов, поступающих в газгольдер, контролируют в общем факельном газопроводе на расстоянии 150—200 м от газгольдера. Должно быть также обеспечено дистанционное управление исполнительными органами со щита операторной и дистанционное электрозажига-ние факела. [c.189]

    Выбросы в зависимости от температуры подразделяют на сильно нагретые (А/ = выбр— окр>ЮО°С), нагретые (20 С< <Д/<100°С), слабо нагретые (5°С<Д/<20°С), изотермические (Дi = 0) и охлажденные (Д <0°С). К сильно нагретым относятся дымовые газы, газы горячих факелов на предприятиях, высокотемпературных технологических процессов. Для предприятий химической промышленности характерны нагретые, слабо нагретые и изотермические выбросы. [c.16]


Смотреть страницы где упоминается термин Факелы: [c.45]    [c.103]    [c.117]    [c.240]    [c.156]    [c.155]    [c.184]    [c.186]    [c.35]    [c.18]    [c.18]   
Свободноконвективные течения, тепло- и массообмен Кн.2 (1991) -- [ c.112 , c.152 , c.154 , c.191 , c.193 ]

Свободноконвективные течения тепло- и массообмен Т2 (1991) -- [ c.112 , c.152 , c.154 , c.191 , c.193 ]

Сочинения Том 19 (1950) -- [ c.53 , c.439 , c.456 ]




ПОИСК







© 2025 chem21.info Реклама на сайте