Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прогулка по хромосоме

    Методом прогулки по хромосоме была построена генетическая карта участка размером более 100 т.п.н., занимающего левую половину сложного локуса. [c.263]

    Сложные локусы и прогулка по хромосоме  [c.476]

    Любой сегмент локуса w, полученный в таком клоне, может быть использован для выделения всего локуса с помощью метода прогулка по хромосоме , который представляет собой усовершенствованный вариант рестрикционного картирования. Он основан на использовании перекрывающихся фрагментов, полученных в результате разрывов генома в одной и той же области. Принцип метода иллюстрирует рис. 37.5. [c.477]


Рис. 37.5. Прогулка по хромосоме осуществляется путем последовательных актов гибридизации между перекрывающимися клонами генома. Рис. 37.5. Прогулка по хромосоме осуществляется <a href="/info/1456480">путем последовательных</a> актов <a href="/info/978572">гибридизации между</a> перекрывающимися клонами генома.
    Прогулка по хромосоме -это инструмент, позволяющий систематически картировать хромосомы эукариотических организмов. Обсуждав-щиеся в этой главе методы работы с ДНК-клонирование рестрикционных фрагментов, анализ сайтов рестрикции в клонируемой ДНК, метод Саузерна, использование клонируемой ДНК в качестве радиоактивного зонда при гибридизации с другими фрагментами ДНК-дают возможность использовать мощные методы генетического анализа, разработанные на прокариотических организмах, для исследования генетической организации эукариот на уровне нуклеотидных последовательностей. Применение этих методов привело к колоссальному прогрессу в нащих знаниях об организации, функционировании и эволюции геномов эукариот. Некоторые из этих открытий мы подробно обсудим в следующих главах, о других можно прочитать в научных журналах. [c.288]

    Прогулка по хромосоме Рекомбинантная ДНК Уравнение Со1 Фермент модификации ДНК Фермент рестрикции ДНК Электрофорез в геле [c.291]

    Выделение перекрывающихся клонов ДНК ( прогулка по хромосоме ) позволяет идентифицировать ген, находящийся по соседству с тем, который уже клонирован [60] [c.333]

    Первая глава данного тома касается использования плаз-мидных векторов, имеющих в своем составе высокоспецифичные промоторы РНК-полимераз некоторых бактериофагов. Такие векторные молекулы позволяют получать радиоактивно меченные зонды, которые благодаря своим уникальным свойствам все шире применяются сейчас в исследованиях структуры и функций нуклеиновых кислот. Подобные системы на основе космидных векторов рассматриваются во второй главе. Эти векторы разработаны для того, чтобы сделать менее трудоемкими прогулки по хромосомам высших организмов. Фаговые промоторы здесь расположены таким образом, что синтезируемый радиоактивно меченный зонд соответствует концевой области клонированной ДНК, а это облегчает поиск клонов, содержащих перекрывающиеся сегменты ДНК. [c.8]

    Прогулка по хромосоме . Метод гибридизации полезно использовать, например, для анализа очень протяженного гена. При этом с помощью подходящего зонда из геномной библиотеки ДНК извлекается первоначально какая-то часть такого гена. Нуклеотидная последовательность этой части гена будет, как правило, длиннее зонда, и ее концы будут перекрываться с другими фрагментами данного гена в этой библиотеке, т. е. будут по крайней мере частично гибридизоваться с ними. Свободные концы этих фрагментов будут гибридизоваться со следующими и т.д., пока весь структурный ген не будет полностью идентифицирован серией перекрываю- [c.127]


    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]

Рис. 20.27. Прогулка по хромосоме . А. Зонд 1 гибридизуют с клонированным фрагментом ДНК длиной 40 т. п. н. После субклонирования и построения рестрикционной карты последовательность, дистальную по отношению к гибридизовавшейся, используют для создания зонда 2. Б. При помощи зонда 2 из библиотеки выбирают другой клон (отличный от клона 1) и используют последовательность, дистальную по отношению к гибридизовавшейся с ним, для создания зонда 3. Клоны 1 и 2 вместе составляют примерно 80 т. п. н. (за вычетом перекрывающегося участка - зонд Рис. 20.27. Прогулка по хромосоме . А. Зонд 1 гибридизуют с <a href="/info/1345809">клонированным фрагментом</a> ДНК длиной 40 т. п. н. После субклонирования и <a href="/info/1868688">построения рестрикционной карты</a> последовательность, дистальную по отношению к гибридизовавшейся, используют для создания зонда 2. Б. При <a href="/info/1338479">помощи зонда</a> 2 из библиотеки выбирают другой клон (отличный от клона 1) и используют последовательность, дистальную по отношению к гибридизовавшейся с ним, для создания зонда 3. Клоны 1 и 2 вместе составляют примерно 80 т. п. н. (за вычетом перекрывающегося участка - зонд
    Прогулка по хромосоме ( hromosome walking) Метод идентификации нуклеотидных последовательностей, фланкирующих известные гены, для которых имеются олигонуклеотидные зонды. Фланкирующие последовательности используются затем в качестве зондов для идентификации прилегающих к ним последовательностей, и т,д. [c.557]

    Прыжки по хромосоме ( liromosome jumping) Один из вариантов метода прогулки по хромосоме , характеризующийся тем, что в результате мутации маркерный ген, использующийся для скрининга, перемещается (прыгает), что позволяет выявить новые сцепленные с ним гены. [c.558]

    ПРОГУЛКА ПО ХРОМОСОМЕ hromosome walking). Термин означает последовательное выделение клонов, содержащих перекрывающиеся фрагменты ДНК. С помощью такого подхода можно картировать ДНК. [c.525]

    Рис, 9,16, Карта рестрикции участка Х-хромосомы Drosophila melanogaster, полученная при анализе перекрывающихся фрагментов ДНК клонированных в харон-фагах X и отобранных методом прогулки по хромосоме слева направо, как это описано в тексте. На рисунке представ- [c.284]

Рис. 5-85. Использование перекрывающихся фрагментов для картирования интересующего нас гена путем прогулки по хромосоме . Для того чтобы сократить время прогулки , наиболее пригодны геномные библиотеки, содержащие очень крупные клонированные молекулы ДНК. Зохвдом для каждого следующего клона служит короткий Р-фрагмент ДНК одного из концов предыдущего идентифицированного клона. Если, например, используется правый конец, то и перемещение происходит вправо , как в случае, представленном на этом рисунке. Короткий концевой фрагмент удобен в качестве зонда еще и потому, что это снижает вероятность присутствия в зогще повторяющейся последовательности ДНК, которая могла бы гибридизоваться со многими клонами из разных частей генома и тем самым прервать прогулку . Рис. 5-85. Использование перекрывающихся фрагментов для картирования интересующего нас <a href="/info/1385486">гена путем</a> прогулки по хромосоме . Для того чтобы сократить время прогулки , наиболее пригодны <a href="/info/199963">геномные библиотеки</a>, содержащие очень <a href="/info/199905">крупные клонированные</a> молекулы ДНК. Зохвдом для каждого следующего клона служит короткий Р-фрагмент ДНК одного из концов предыдущего идентифицированного клона. Если, например, используется <a href="/info/574598">правый конец</a>, то и перемещение происходит вправо , как в случае, представленном на этом рисунке. <a href="/info/1324410">Короткий концевой</a> фрагмент удобен в качестве зонда еще и потому, что это снижает вероятность присутствия в зогще повторяющейся последовательности ДНК, которая могла бы гибридизоваться со многими клонами из <a href="/info/304621">разных частей</a> генома и тем самым прервать прогулку .
    Основное достоинство генетического подхода — быстрота и эффективность метода достаточно большое число экспериментов можно проводить параллельно. Поэтому не возникает нужды в повторном скрининге, что делает этот метод особенно удобным там, где требуется повторное выделение многих космид (например, при прогулке по хромосоме ). Другое преимущество генетического метода — очень высокая чувствительность гомологичной рекомбинации к ошибочному спариванию последовательностей [25, 26], Данное обстоятельство может быть особенно удобным, например, при выделении космид, содержащих конкретные копии тех или иных семейств генов, или в экспериментах по прогулке по хромосоме . Такие эксперименты упрощаются при работе с некоторыми из наших новых векторов (Эрих и др., в печати), содержащих ЫоИ-сашы, фланкирующие инсерционный сайт, что позволяет провести быстрое и избирательное клонирование концевых фрагментов вставки в производных риС18 или рЕМВЬ18, содержащих 7Уо/1-сайты в полилинкере. [c.84]

Рис. 36.10. Метод прогулка по хромосоме . Пусть необходимо обнаружить ген X в рамках протяженного фрагмента ДНК. Точное положение гена неизвестно, однако имеется первичный зонд ( ), соответствующий некоему участку генома (показан в данном случае на 5 -конце исследуемого фрагмента ДНК). Кроме того, имеется библиотека перекрывающихся фрагментов генома. (Для упрощения на рисунке изображены только пять фрагментов.) Первичный зонд гибриди-зуется только с клонами, содержащими фрагмент 1. Этот фрагмент можно использовать далее в качестве зонда для выявления фрагмента 2. Процедура последовательной гибридизации повторяется вплоть до обнаружения фрагмента 4, который гибридизуется с фрагментом 5, содержащим искомый ген X. Рис. 36.10. <a href="/info/1324916">Метод прогулка</a> по хромосоме . Пусть необходимо обнаружить ген X в рамках <a href="/info/1901476">протяженного фрагмента</a> ДНК. Точное <a href="/info/700874">положение гена</a> неизвестно, однако имеется первичный зонд ( ), соответствующий некоему участку генома (показан в данном случае на 5 -конце исследуемого фрагмента ДНК). Кроме того, имеется библиотека перекрывающихся фрагментов генома. (Для упрощения на рисунке изображены только пять фрагментов.) Первичный зонд гибриди-зуется только с клонами, содержащими фрагмент 1. Этот <a href="/info/1435681">фрагмент можно</a> использовать далее в качестве зонда для выявления фрагмента 2. <a href="/info/1463365">Процедура последовательной</a> гибридизации повторяется вплоть до <a href="/info/323989">обнаружения фрагмента</a> 4, который гибридизуется с фрагментом 5, содержащим искомый ген X.

    Рис. 2 дает представление о размерах хромосомных сегментов, в пределах которых работают различные современные методы генетических исследований. Ось ординат представляет собой логарифмическую шкалу физических расстояний, измеренных в парах (или в тысячах пар) нуклеотидов (п.н. или т.п.н,). На шкале приведены и значения генетических расстояний, измеряемые в сантиморганидах (сМ). 1 сМ приблизительно равна 10 п. н. Однако это соотношение нельзя считать универсальным, ибо зависимость между генетическим и физическим расстоянием на хромосоме имеет нелинейный характер, на нее могут оказывать влияние горячие точки рекомбинации. Наличие таких областей может привести к ситуации, когда сравнительно большому генетическому расстоянию соответствует небольшой отрезок на физической карте. В то же время в геноме существуют участки, рекомбинация в которых маловероятна, а это приводит к обратной ситуации. Как показано на рис. 2, классические методы молекулярной генетики хорошо работают на последовательностях длиной до 50 г. п. н., что соответствует максимальному размеру вставки в космидный вектор. Участки большей длины можно клонировать путем прогулки по хромосоме , когда, используя уже клонированные последовательности, геномную библиотеку скринируют с целью получения перекрывающихся клонов. Таким способом удаётся анализировать последовательности длиной до нескольких сотен т. п. н. Однако, в [c.96]

    Использование YA для получения клонотек нуклеотидных последовательностей. При создании искусственных хромосом дрожжей in vitro в среднем удается клонировать фрагменты ДНК длиной 300 т.п.о. Однако с помощью гомологичной рекомбинации, проводимой непосредственно в клетках дрожжей, можно получать вышеупомянутые вставки в несколько млн п.о. Для реализации полной емкости вектора используют предварительно полученные YA -конструкции, в которых клонированы частично перекрывающиеся последовательности. Для обнаружения перекрывающихся клонов используют рестрикционное картирование с гибридизацией по Саузерну, метод прогулки по хромосоме и ряд других стандартных методов исследования генома, которые будут рассмотрены во втором томе этой книги. После обнаружения таких перекрывающихся клонов проводят скрещивание гаплоидных клеток, содержащих требуемые YA , в полученных диплоидных штаммах индуцируют мейоз, при котором с высокой частотой возникают требуемые рекомбинантные YA с протяженными непрерывными последовательностями - контигами - исследуемого генома. Для предотвращения образования в результате рекомбинации дицент-рических и ацентрических YA , которые нестабильны, объединяемые вставки должны быть клонированы в одной и той же 5 3 -ориентации по отношению к маркерам вектора. После завершения клетками мейотических делений и споруляции в спорах обнаруживают требуемые рекомбинанты, конечная длина которых после проведения серии последовательных скрещиваний может превышать 2 млн п.о. [105, в]. [c.91]


Смотреть страницы где упоминается термин Прогулка по хромосоме: [c.470]    [c.472]    [c.283]    [c.283]    [c.287]    [c.287]    [c.333]    [c.335]    [c.335]    [c.83]    [c.50]    [c.50]    [c.50]    [c.50]    [c.97]    [c.97]    [c.16]    [c.221]    [c.273]    [c.275]    [c.179]   
Современная генетика Т.3 (1988) -- [ c.283 , c.287 , c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте