Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рестрикционные фрагменты, полиморфизм

Рис. 8.7. Полиморфизм длины рестрикционных фрагментов 5 -фланкирующего участка гена инсулина человека. Указано место вставок длиной 1,5 и 3,4 кЬр. Рге — участок, кодирующий аминокислотную последовательность, примыкающую к К-концу проинсулина, которая, видимо, способствует его секреции в эн-доплазматйческий ретикулум В, С и А — последовательности, кодирующие В-цепь, конвекторный пептид и А-цепь инсулина. Заштрихованный участок — интрон (гл. 7). Рис. 8.7. <a href="/info/587024">Полиморфизм длины рестрикционных фрагментов</a> 5 -фланкирующего участка <a href="/info/1324232">гена инсулина</a> человека. Указано место вставок длиной 1,5 и 3,4 кЬр. Рге — участок, кодирующий <a href="/info/31042">аминокислотную последовательность</a>, примыкающую к К-концу проинсулина, которая, видимо, способствует его секреции в эн-доплазматйческий ретикулум В, С и А — последовательности, кодирующие В-цепь, конвекторный пептид и А-<a href="/info/155767">цепь инсулина</a>. Заштрихованный участок — интрон (гл. 7).

    Построение генетической карты сцепления человека с помощью метода, основанного на полиморфизме длины рестрикционных фрагментов [c.458]

    Другой тип полиморфизма ДНК заключается В различном числе тандемных повторов, имеющих общую центральную часть из 10-15 пар оснований ( мини-сателлиты ) [1795]. Участок хромосомы может нести различное количество таких повторов. Возникновение полиморфизма этого типа облегчается благодаря идентичности последовательностей нуклеотидов в повторах, что приводит к делециям и дупликациям, возникающим в результате неравного кроссинговера (рис. 6.6). Длина рестрикционных фрагментов зависит от числа повторов. Такие гипервариабельные участки ДНК расположены около гена, кодирующего инсулин, и вокруг комплекса Hb в хромосоме 11, встречаются они и в других хромосомах. Поскольку данный тип поли- [c.289]

    Бурное развитие молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря новаторским идеям Д. Ботштейна, Р. Уайта, М. Скол-ника и С. Дэвиса. Они обратили внимание, что полиморфизм длины рестрикционных фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы), поддающиеся картированию. Как писали авторы в своей статье, мы хотим предложить новый способ построения генетической карты сцепления человека. В его основе лежит создание при помоши технологии рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой . Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро- [c.458]

    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]


    Полиморфизм длины рестрикционных фрагментов [c.451]

    Типы полиморфизма ДНК. Наиболее распространенный тип полиморфизма ДНК-рестрикционный полиморфизм. Если в сайте узнавания для какой-то рестриктазы происходит точечная мутация, фермент не распознает свой сайт и не разрезает ДНК (рис. 2.84). Имея под рукой специфические ДНК-зонды и рестриктазы, можно анализировать ДНК. Рестрикционные фрагменты ДНК (рестрикты) различаются по длине (полиморфизм по длине рестрикционных фрагментов). Они идентифицируются по различной подвижности после гибридизации по Саузерну (рис. 6.5). В настоящее время метод гибридизации по Саузерну включает радиоактивное мечение. Вероятно, в будущем появится возможность нерадиоактивного мечения фрагментов ДНК. Точечные мутации, заменяющие один нуклеотид на другой в некодирующем районе ДНК, встречаются очень часто. Немногие систематические исследования изменчивости ДНК проводились путем анализа с использованием большого количества рестриктаз в небольшой выборке особей (10 12). Результаты, полученные для хорошо изученных к настоящему времени областей генома (гемоглобина, альбумина и сегментов ДНК с неизвестной функцией из разных хромосом) [1143 1742 1959], свидетельствуют о том, что уровень нуклеотидной изменчивости приблизительно на порядок выше, чем наблюдаемый по структурным генам, кодирующим белки. Это означает, что разница между случайно выбранными хромосомами составляет в среднем 75оо" 7г5о нуклеотидов (гетерозиготность = = 0,001 — 0,004). Особенно подходят для выявления вариантов ДНК ферменты Мер и Тая1, узнающие метилированный динуклеотид СрО. Большинство вариантов по длине рестрикционных фрагментов диморфны, т. е. имеют только два аллеля -присутствие ( + ) или отсутствие ( —) сайта рестрикции. Частота полиморфного ва- [c.288]

    Исследования, которые заключаются в сравнении частоты полиморфизма длины рестрикционных фрагментов у больных и в контроле, следует интерпретировать осторожно, в особенности если большие различия не обнаружены. Важно помнить, что доказать этническую идентичность контрольной популяции довольно трудно, а малые различия в генных частотах, обусловленные как разным происхождением генов, так и случайными флуктуациями, могут приводить к самым неожиданным результатам. [c.304]

    Даже если бы этот вывод оказался справедливым для большинства случаев, это не решило бы проблему проявления мутации лишь в немногих клетках из тех, что ее содержат. Какую-то ясность в этот вопрос могут внести молекулярно-биологические исследования (разд. 2.3) [1389 1414 1476] с использованием полиморфизма рестрикционных фрагментов ДНК, тесно сцепленных с геном ретинобластомы. Согласно полученным данным, решающая стадия протекает в гомологичной хромосоме, несущей нормальный аллель. Иногда рестрикционные маркеры, унаследованные от одного из родителей, в раковых клетках полностью отсутствовали, что свидетельствует об исчезновении хромосомы, полученной от этого родителя, и ее замещении второй копией хромосомы, несущей мутантный ген ретинобластомы в других случаях к тому же следствию - переводу мутации в гомозиготное состояние - приводят рекомбинационные события, в которых принимает участие только часть нормальной хромосомы (рис. 5.37, 5.38). Значение этого результата, по-видимому, выходит за рамки частного [c.212]

    Полиморфизм длины рестрикционных фрагментов и эволюция [c.27]

    Анализ реальных образцов ДНК несколько более сложен, поскольку хромосомы встречаются парами (рис. 20.11, В). Однако и в этом случае каждому генотипу (+/+, +/-, -/-) соответствует определенный набор фрагментов, образующийся в результате гибридизации с зондом. Кроме того, для выявления сайта рестрикции на участке 1 можно использовать зонды, гибриди-зующиеся с другими участками ДНК между сайтами А и В (рис. 20.11, Г). Феномен, состоящий в том, что наличие часто встречающегося в популяции измененного рестрикционного сайта приводит к образованию специфического набора фрагментов ДНК, называют полиморфизмом длины рестрикционных фрагментов (НДРФ). Полиморфные сайты рестрикции образуют маркерные локусы на той хромосоме, где они присутствуют. [c.453]

    Методы обнаружения нуклеотидных замен в геномной ДНК позволили исследователям разобраться в природе многих наследственных болезней человека. Эти методы дают возможность идентифицировать специфические мутации, приводящие к заболеванию [1—6], а также полиморфные участки ДНК, используемые в качестве маркеров в генетическом анализе [7—11]. Благодаря развитию методов выявления нуклеотидных замен стала реальностью пренатальная диагностика многих наследственных болезней человека. Если ген, отвечающий за заболевание, известен, соответствующую мутацию можно обнаружить в геномной ДНК или в РНК при помощи блот-гибридизации с использованием меченых олигонуклеотидов в качестве гибридизационных зондов. В том случае, когда мутировавшая нуклеотидная последовательность неизвестна, замены нуклеотидов можно определить по полиморфизму длины рестрикционных фрагментов <ПДРФ) [7]. ПДРФ обнаруживается по наличию или отсутствию сайта рестрикции во фрагменте геномной ДНК при гибридизации меченого ДНК-зонда с обработанной рестриктазами геномной ДНК, расфракционированной по размеру в агарозном геле и перенесенной на мембранный фильтр. Этот метод оказался очень эффективным для выявления как значимых мутаций, так и нейтрального полиморфизма в геноме человека и других организмов. Однако большую часть мутаций и полиморфных участков генома не удается обнаружить с помощью анализа ПДРФ, поскольку вероятность того, что замена нуклеотида изменит именно сайт рестрикции, низка. Так, например, многие точковые мутации гена р-глобина человека, вызывающие талассемию, не изменяют сайтов рестрикции, а потому не могут быть непосред- [c.123]


    Сходный метод был применен для пренатальной диагностики -талассемии. При этой гемоглобинопатии -цепь гемоглобина синтезируется либо в недостаточном количестве, либо не синтезируется вообще. При использовании метода определения полиморфизма рестрикционных фрагментов по длине (RFLP) глубоких знаний о молекулярных основах патологических изменений при данном заболевании не требуется. Это по сути метод, отпечатков пальцев , при помощи которого выявляются аномалии, сопутствующие клиническим симптомам, и поэтому он может применяться при лечении многих наследственных болезней  [c.344]

    Полиморфизм длины фрагментов рестрикции. Если имеется подходящий ДНК-зонд, то можно обнаружить прямым методом некоторые генетические болезни, возникающие вследствие мутаций (гемофилия, мыщечная дистрофия и др.). Ответственный за болезнь, но неидентифицированный ген может быть обнаружен, если он находится вблизи последовательности ДНК, поддающейся определению. Во всем человеческом геноме примерно одно из 150 оснований является полиморфным, т. е. варьируется у разных индивидуумов. Каждое щестое из этих случайных изменений или порождает, или разрушает участок рестрикции. В результате этого потенциальные участки рестрикции присутствуют вдоль молекулы ДНК с интервалом примерно в 1000 пар оснований. Их наличие или отсутствие у разных людей приводит к тому, что ДНК в процессе рестрикции разрезается на фрагменты разной длины (полиморфизм длины рестрикционных фрагментов). Если при обследовании членов семьи обнаруживается взаимосвязь между полиморфизмом длины рестрикционных фрагментов и наследственным заболеванием, делается заключение, что данный участок рестрикции расположен вблизи от гена, ответственного за патологию. В таком случае присутствие данного типа полиморфизма можно использовать для предсказания наличия мутантного гена у другого члена семьи или в ткани плода. Однако использование этой техники для пренатальной диагностики требует предварительного обследования семьи. [c.528]

    Существенной областью применения ДНК-олигонуклеотидов является дородовая (пренатальная) лиагностика наследственных заболеваний. Более 500 наследственных болезней человека связаны с нарущением какого-то одного гена. В больщинстве случаев эти мутации рецессивны. Это означает, что болезнь развивается, если человек получает дефектные копии гена сразу от обоих родителей Одна из задач современной медицины состоит в том, чтобы выявлять такие аномальные эмбрионы до рождения, информировать об этом мать и дать ей возможность прекратить беременность. Например, для серповидноклеточной анемии известна точная нуклеотидная замена в мутантном гене (последовательность GAG заменена на GTG в пени ДНК. кодирующей Р-пепь гемоглобина) В данном случае синтезируют два олигонуклеотида Один из них соответствует последовательности нормального гена в участке предполагаемых мутаций, другой несет замену, обусловливающую болезнь. В условиях когда эти последовательности достаточно коротки (примерно 20 нуклеотидов) и при температуре гибридизации, при которой стабильность сохраняют лищь точно совпадающие цепи, можно использовать радиоактивные зонды. Тест состоит в том, что из эмбриональных клеток, содержащихся в амниотической жидкости (ее получают в ходе процедуры, называемой амниоцентезом), выделяют ДНК и используют ее для Саузерн-блоттигна с радиоактивными ДНК-зондами. Дефектный эмбрион легко опознается, поскольку его ДНК будет гибридизоваться только с олигонуклеотидом, комплементарным мутантной последовательности ДНК. К сожалению, для больщинства наследственных болезней дефект на уровне ДНК еще не расшифрован, однако круг заболеваний, для которых применяется дородовая диагностика, постоянно расширяется. Это стало возможно благодаря использованию феномена полиморфизма длины рестрикционных фрагментов. В данном случае с помощью гибридизации выявляют наличие или отсутствие определенных сайтов рестрикции, тесно сцепленных с дефектными генами. [c.241]

Рис. 5-90. Выявление полиморфизма длины рестрикционных фрагментов (ПДРФ) блот-анализом по Саузерну Для простоты в хромосомах показано лишь несколько сайтов рестрикции, хотя в действительности их многие тысячи. Если до воздействия рестрицируюшей нуклеазой провести амплификацию соответствуюш,его участка методом ПЦР, этот же тест можно провести без радиоизотопов и от блот-анализа отказаться Рис. 5-90. Выявление <a href="/info/587024">полиморфизма длины рестрикционных фрагментов</a> (ПДРФ) <a href="/info/1345707">блот-анализом</a> по Саузерну Для простоты в хромосомах показано лишь несколько <a href="/info/1324920">сайтов рестрикции</a>, хотя в действительности их многие тысячи. Если до воздействия рестрицируюшей нуклеазой провести амплификацию соответствуюш,его участка методом ПЦР, этот же тест можно провести без радиоизотопов и от <a href="/info/1345707">блот-анализа</a> отказаться
    ДНК-маркеры [560 953]. Интенсивные исследования по молекулярной генетике апо-липопротеинов и ферментов, вовлеченных в метаболизм липидов, привели к созданию ДНК-зондов для многих из этих генов. Зонды используются с разными целями. Сцепленный с локусом LDL-рецептора полиморфизм по длине рестрикционных фрагментов [719] оказывается полезным для доклинической диагностики в тех семьях, в которых данные о повышении холестерина остаются не совсем ясными для интерпретации, но имеется по крайней мере один надежно диагностированный больной. Таким способом можно продемонстрировать и изоаллельную изменчивость LDL-рецептора (см. выше). Прямые диагностические зонды для дефектных генов LDL-рецепторов пока еще отсутствуют, и их создание представляет собой проблему (4.6.4). [c.304]

    Применение ПДРФ (полиморфизма длины рестрикционных фрагментов) в анализе сцепления стало обычной процедурой и значительно ускорило процесс картирования [25]. Однако этот подход имеет и некоторые недостатки. В большинстве случаев ПДРФ представляет собой всего лишь диморфизм, и соответствующие локусы не могут поэтому характеризоваться более чем 50%-ной гетерозиготностью. Для того чтобы данное скрещивание дало какую-нибудь информацию о сцеплении, по крайней мере один из родителей должен быть гетерозиготным как по интересующей, так и по маркерной области. [c.205]

    Разработка метода рекомбинантных ДНК явилась импульсом для развития генетики человека. Было высказано предположение [1], что генетический полиморфизм на уровне последовательностей ДНК, который можно легко наблюдать на примере полиморфизма длины рестрикционных фрагментов (или ПДРФ), — достаточно частое явление и соответствующие аллельные варианты могут использоваться как генетические маркеры, позволяющие проводить систематическое изучение наследственности человека, включая построение полной картин- его генома. [c.214]


Смотреть страницы где упоминается термин Рестрикционные фрагменты, полиморфизм: [c.167]    [c.343]    [c.343]    [c.478]    [c.50]    [c.50]    [c.198]    [c.202]    [c.99]    [c.125]    [c.172]    [c.238]    [c.50]    [c.50]    [c.7]    [c.98]    [c.114]    [c.7]    [c.98]    [c.114]   
Биотехнология (1988) -- [ c.0 ]

Биотехнология - принципы и применение (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Генетическая полиморфизм длины рестрикционных фрагментов

Полиморфизм

Полиморфизм длины рестрикционных фрагментов и эволюция

Рестрикционные фрагменты, полиморфизм по длине

Эндонуклеазы рестрикции полиморфизм длины рестрикционных фрагментов



© 2025 chem21.info Реклама на сайте