Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проявляющий раствор для аргинина

    После окончания разделения хроматограмму высушивают на воздухе и проявляют раствором нингидрина путем опрыскивания из пульверизатора. З-атем нагревают 15—20 мин при 60° С в термостате или сушильном шкафу. Расположение аминокислот сверху вниз по направлению движения растворителя следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серии (три последние аминокислоты располагаются в виде тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты также часто располагаются в виде тесно сближенных пятен). [c.301]


    Аминокислоты вымываются растворами цитрата натрия при выбранных концентрациях ионов натрия, значениях pH и температурах. Первыми должны выходить кислые аминокислоты с двумя карбоксильными группами в молекуле, чаще всего аспарагиновая и глутаминовая кислоты (табл. 30). Затем следует большая группа нейтральных аминокислот с одной карбоксильной группой и одной аминогруппой в молекуле. Некоторые из них, такие, как тирозин и фенилаланин, содержащие ароматические кольца, удерживаются дольше других в этом случае ясно проявляется растворяющее действие смолы. Последними вымываются щелочные аминокислоты, к которым относятся лизин, триптофан и аргинин. Так как эта группа аминов удерживается [c.220]

    После окончания разделения хроматограмму высушивают на воздухе и проявляют, для этого ее опрыскивают из пульверизатора 0,2%-ным раствором нингидрина в ацетоне. Затем нагревают 15—20 мин при 60 °С в термостате или сушильном шкафу. Расположение аминокислот сверху вниз по направлению движения растворителя следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серии (три последние аминокислоты располагаются в виде тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты также часто располагаются в виде тесно сближенных пятен). Для того чтобы сохранить пятна на хроматограмме, их фиксируют 1%-ным раствором нитрата меди в ацетоне, погружая хроматограмму в этот раствор или опрыскивая ее из пульверизатора. После фиксации пятна приобретают красно-оранжевую окраску. [c.331]

    Наименее экранированными протонами (см. рис. 14.2) являются протоны NH-группы индольного кольца триптофана (около 0,0 м. д. в t-шкале), пептидных групп NH (1,5—2,0т), протоны при С-2 в гистидине и NH-протоны в аргинине (2—Зт). Протоны пептидных iNH-rpynn обычно не будут проявляться в спектрах белков, растворенных в DgO, а в спектрах растворов в НгО их сигналы будут уширяться и исчезать при больших значениях pH вследствие катализируемого шелочью обмена (см. разд 13.3.4). Ароматические протоны и протон при С-4 гистидиновых остатков дают сигналы в области 2,5—3,2т, за ними следует ясно выраженное окно , которое наблюдается в спектрах всех белков в интервале от 3,5 до 5т. В области от 4 до 6 т обычно расположены широкие и слаборазре-шенные сигналы а-СН-протонов. Они в различной степени (иногда почти полностью) могут быть скрыты пиками НгО или HOD. Далее расположены сигналы от разных метиленовых и метильных групп боковых цепей. В самых высоких полях (- Эт) расположены сигналы метильных групп алиф атических боковых цепей валина, лейцина и изолейцина. В спектрах денатурированных белков в состоянии статистического клубка эти сигналы образуют один ясно видимый и очень широкий пик, но в спектрах нативных белков он может расщепляться в связи с тем, что эти группы находятся в различном локальном окружении. Эти пики и сигналы в самой слабопольной области спектра, а также резонансные сигналы, сдвинутые вследствие контактного взаимодействия, исследовались наиболее интенсивно. [c.351]


    Важный аспект изучения миоглобина с помощью ЯМР состоит в исследовании слабопольных сигналов протонов, способных к обмену, путем сравнения спектров в ОгО и НгО, как это было описано для лизоцима в разд. 14.2.2. Пател и сотр. [64а] оиисали в спектрах миоглобина и оксимиоглобина резонансные сигналы в области от О до —5 т. На основании данных рентгеноструктурного анализа химически модифицированных белков в разных состояниях эти сигналы были идентифицированы как пики NH-протонов двух остатков триптофана, один сигнал приписан остатку аргинина и один — гистидину. Шед и сотр. [62] наблюдали 4 сигнала в области от О до —4 т в водных растворах цианферримиоглобина, химические сдвиги которых проявляют небольшую температурную зависимость, но их отнесение точно неизвестно. Они обнаружили также три дополнительных пика в области от —3 до —141, поло- [c.374]

    Дженкинсон и Тинслей [19] идентифицировали с помощью хроматографии на бумаге состав аминокислот, гидролизат которых был получен в ходе изучения аминокислот растительного происхождения, выделенных из компоста. Десять мл гидролизата, содержавшего приблизительно 1 мг связанного азота, запаривали досуха при пониженном давлении, растворяли в 5 мл воды и снова упаривали досуха. Остаток растворяли в 1,5 мл воды и центрифугировали. Осветвленную жидкость в количестве 0,04 мл наносили на бумагу Ватман № 1. Разделение проводили элюентом, предложенным Вольфом [20]. Хроматограмму проявляли, окуная лист в 0,2%-ный раствор нингидрина в ацетоне. Были идентифицированы следующие аминокислоты цистеиновая, аспарагиновая, глутаминовая, лизин, аргинин, глицин, гистидин, серии, аланин, тирозин, пролин, валин, треонин, изолейцин, лейцин и фенилаланин. Метионин не поддавался определению, поскольку его трудно было отделить от глицина в описанных системах растворителей. Метио-нин-5-оксид тоже не отделялся от валина. Хроматограммы опускали в 0,1%-ный раствор изатина в ацетоне для обнаружения про-лина и подтверждения отсутствия оксипролина. Детектирование и определение содержания пептида с остатком лизина в середине цепи проводили с помощью 2,4-динитрофторбензола [21]. Эта реакция протекает, поскольку е-аминогруппа, в отличие от а-амино-группы лизина, свободна и может вступать в реакцию. [c.306]

    Погружая хроматограмму в раствор I, обнаруживают соединения, содержащие группы —SH. Эти соединения проявляются на хроматограмме в виде красных пятен. Хроматограмму оставляют сохнуть на воздухе, а затем погружают в раствор II или III. Соединения, содержащие группу —S —S—, проявляются в виде красных пятен на желтоватом фоне. Аргинин с раствором I дает нятна, окрашенные в оранжевый цвет. Однако постепенно их цвет изменяется до серосинего. После выцветания пятен можно провести еще одну операцию — проявление с иомотцью нингидрина. [c.750]

    Известно, что белки являются амфотерными полиэлектролитами, т.е. сочетают в себе кислотные и основные свойства. Кислотные свойства белку придают кислые аминокислоты (аспарагиновая, глутаминовая), а щелочные свойства — основные аминокислоты (лизин, аргинин, гистидин). Чем больше кислых аминокислот содержится в белке, тем ярче выражены его кислотные свойства, и чем больше входит в состав белков основных аминокислот, тем сильнее проявляются его основные свойства. Причем р1 каждого белка определяется соотношением кислых и основных групп боковых радикалов аминокислот чем выше соотношение кислые/основные аминокислоты в белке, тем ниже его изоэлектрическая точка [Строев, 1986]. Нами проведена оценка содержания заряженных аминокислот в различных изоферментах (А,, В и С) пероксидазы (табл. 3). Видно, что в составе полипептидной цепи фермента содержится всего от 22 до 26% заряженных аминокислот. Таким образом, V4 части полипептидной цепи пероксидазы представлены гидрофобными и незаряженными аминокислотами. Наличие высокой степени гидрофобности белковой молекулы позволяют предположить, что пероксидаза может являться мембранным ферментом, что и было доказано изучая каталитическую активность пероксидазы в системах обращенных мицелл, в том числе и АОТ [Клячко, 1990 Клячко и др., 1997]. В экспериментах использовались нативная и рекомбинантная пероксидазы. Последняя не содержала углеводных остатков на поверхности белковой молекулы. Показано, что стабильность фермента зависит от степени гидратации ПАВ (>v = [Н20]/[А0Т]). В экспериментах использовались два подхода нековалентной модификации микросреды внутренней полости мицеллы. Во-первых, в водный буферный раствор, солюбилизируемый обращенными [c.24]


Смотреть страницы где упоминается термин Проявляющий раствор для аргинина: [c.28]    [c.71]    [c.141]    [c.53]    [c.90]    [c.53]   
Методы общей бактериологии Т.3 (1984) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин

Аргинин в составе проявляющего раствора



© 2025 chem21.info Реклама на сайте